Parameters estimation of new eclipsing variable HD 182144 using multicolor and spectral data

Vladyslava Marsakova¹, Viktoriia Krushevska^{2,3}, Sergey Shugarov², Theodor Pribulla², Illia Garbazhii-Romanchenko¹, Ivan Andronov⁴

¹Odesa Richelieu Science lyceum, Odesa, Ukraine

²Astronomical Institute Slovak Academy of Science, Vysoke Tatry, Slovakia

³Main astronomical observatory of National Academy of Sciences of Ukraine, Kyiv, Ukraine

⁴ Odessa National Maritime University, Odesa, Ukraine

The EA type of variability of this object was revealed while processing CCD-frames of CH Cyg field. For O-C analysis we used the observations made in the Astronomical Institute Slovak Academy of Science (AI SAS), TESS data and brightness estimates using archival photographic plates from the Sonneberg Observatory. We used TESS photometry and radial velocity measurements (using observations at AI SAS and APOGEE-2 data) to estimate the parameters of the orbits in the binary system and the physical parameters of the components. Estimated parameters are given in the tables below. The variable is represented in The International Variable Star Index (VSX).

Name	M Gaia DR3 212963	The Internetional		
AAVSO UID	000-BPX-830 (No observations)		Variable Star	
Constellation	Cygnus			
J2000.0	19 20 55.48 +49 26 23.5 (290.2	Index		
B1950.0	19 19 34.96 +49 20 39.7			
Galactic coord.	80.852 +15.793			
Other names (Internal only)	2MASS J19205548+4926234 BD+49 2986 PPM 58202 TIC 406949643	AG+49 1532 GSC 03551-01685 SAO 48361 TYC 3551-1685-1	AP J19205548+4926234 HD 182144 TD1 24549 >> Add nat	
Variability type	EA			
Spectral type	A0			
Mag. range	9.08 - 9.28 V			
Discoverer	Gaia collaboration; Marsakova	Vladyslava and Shugarov Sergey	/	
Epoch	13 Aug 2022 (HJD 2459804.8065) >> Ephe			

Phase light curve (TESS) with New Algol Variable approximation [1]

Photometric parameters (TESS)	Method	Value
Primary minimum depth, Δm_1 , mag	NAV	0.1790 ±0.0005
Secondary minimum depth, Δm_2 , mag	NAV	0.0645 ±0.0004
Eclipse width, phases	NAV	0.0545 ±0.0001
Total eclipse width, phases	WSAP	0.0246 ±0.0001
Ellipticity effect, mag	NAV	0.00161 ±0.00009
Radii ratio, $\frac{R_2}{R_1}$	(1)	0.4015 ±0.0006
Inclination of orbit, <i>i</i> , ^o	(2)	89,1±0.1

Phase light curves (Zeiss-600 cassegrain telescope and 60\180 mm photolens in AI SAS), **RVs phase curves** (high-dispersion échelle spectrograph, 1.3m Cassegrain-Nasmyth telescope AI SAS and APOGEE-2 RV for the prim. comp. [3]

Brightness estimations by using 260 archive photoplates from Sonneberg Observatory collection (exposed in 1956-1995). Measurements near Minimum I (marked in red) were used for O-C diagram below (Pg).

Outburst	
Period	6.512423 d
Rise/eclipse dur.	5.4% (8.44 h)

RV parameters	Values
RV ampl. for the pr. comp., K 1, km/s	58.0±0.4
RV ampl. for the sec. comp., K 2, km/s	113.1±0.5
γ-velocity, km/s	-6.5±0.2
Eccentricity of the orbit	0
a₁ sin i , a.u.	0.0347±0.0002
a₂ sin i , a.u.	0.0677±0.0003
$M_1 \sin^3 i, M_{\odot}$	2.23±0.02
$M_2 \sin^3 I, M_{\odot}$	1.15±0.01
Mass ratio, q	0.513±0.004

9.0694		I minimum Wall-supported asymptotic parabola (WSAP) (flat+limb darkening)	
3.1332	-0.01881	0.000050	0.01891
8,9974		II minimum (flat) Wall-supported line (WSL)	
	0.47759	0.500080	0.52257

Approximation of the minima. MAVKA Software [2]

Other estimated parameters	Values	
Distance to the system, pc	475±4	
Color excess, E(B-V), mag	0.093 [1]	
Absolute magnitude	0.42±0.03	
Semi-major axis a , a.u.	0.1024±0.0005	
Pr. comp. radius R_1 , R_{\odot} R_1/a	2.72±0.03 0.123±0.002	
Main sequence prediction for $R_1 = M_1^{0.8}, R_{\odot}$	1.90	
Sec. comp. radius R_2 , R_{\odot} R_2/a	1.02 ±0.01 0.046±0.001	
Main sequence prediction for $R_2 = M_2^{0.8}$, R_{\odot}	1.12	
Temperature T ₁ , K	~9000	
Temperature 7 2, K	~6000	

$$\frac{R_2}{R_1} = \sqrt{\frac{1 - 10^{-0.4\Delta m_1}}{10^{-0.4\Delta m_2}}} \qquad (1)$$

$$i = \arcsin \sqrt{\frac{2\frac{R_2}{R_1}}{\left(1 + \frac{R_2}{R_1}\right)\cos^2 2\pi\phi_2 - \left(1 - \frac{R_2}{R_1}\right)\cos^2 2\pi\phi_1}}{\phi_1 = 0.5 - \frac{t_{eclipse}}{2P}} \qquad \phi_2 = 0.5 - \frac{t_{total}}{2P}}$$
(2)

Conclusion

HD 182144=Gaia DR3 2129633355901684480 is typical EA type variable

with circular orbit.

- The data on the moments of minima for 70 years indicate a period of $6.5124230 \pm 0.0000005 d$.
- Since the TESS data indicate a slightly lower value for the period, we can suspect small changes in the period.
- Flat secondary minimum argues for full eclipse that allow to estimate some parameters of the system (listed in the tables).
- Our two-colour diagram for the variable indicates spectral classes in the maximum and the secondary minimum (when we see the primary component) close to A0 given in [4,5].
- The estimation of the radii of the components based on the duration of the eclipses shows that the main component is 1.5 times larger than the star of the main sequence of such a mass should be.

two colour diagram

References

- Tkachenko M.G, Andronov I.L., Chinarova L.L. 2016, Journal of physical studies, 20, 4
- Andrych K.D, Andronov I.L., Chinarova L.L. 2020, Journal of Phys. Studies 24(1), 1902
- 3. Abdurro`uf et al. 2022, ApJS, 259, 35)
- 4. Vyssotsky A.N., & Balz A. G. A. Jr. 1958, Publ. Leander Mc Cormik Obs.,13 (2).
- Cannon A.J., Pickering E.C. 1918-1989,
 VizieR On-line Data Catalog.

Acknowlegement. Viktoriia Krushevska thanks the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09103-03-V01-00002. We are also grateful for financial support from grants APVV-20-0148, VEGA 2/0030/21 and VEGA 2/0031/22.

