Adding TESS to CRÉME Light curves and masses of 300+ eclipsing binaries

A. Moharana, T. Pawar, G. Pawar, F. Marcadon

NCAC Toruń

With the contribution from: **R. Brahm**, J. Coronado, **N. Espinoza**, D. Graczyk, M. Hempel, **A. Jordan, E. Kambe, M. Konacki, S. Kozłowski, H. Maehara**,
D. Minniti, E. Niemczura, J. Olszewska,
B. Pilecki, M. Rabus, **M. Ratajczak, P. Sybilski**,
A. Tajitsu, M. Tamura, A. Tokovinin, **N. Ukita**, L. Vanzi, et al.

Kopal 2024, Litomysl, 13.09.2024

Outline

- CRÉME current status
- Satellite photometry current status
- Highlights of recent (2022 ...) results
- Next steps and future plans

Detached Eclipsing Binaries (DEBs)

- 337 binaries with very precise (< 2%) parameters
- Large fraction of them has incomplete information (e.g. missing [M/H])
- Under-populated regions M/R and HR diagrams

Southworth (2015)

The CRÉME project

- <u>C</u>omprehensive <u>R</u>esearch with <u>É</u>chelles on the <u>M</u>ost interesting <u>E</u>clipsing binaries
- Identification of new examples of rare, poorly studied or otherwise interesting DEBs
- Precise characterization of the studied systems, including: determination of masses, radii, temperatures, distances, metallicities, and ages of stars
- High-quality spectroscopic and photometric data needed

The CRÉME project statistics

- 386 targets observed (2011 ...)
- 7000+ high-resolution spectra
- 19 spectrographs, 17 telescopes
- 300+ n of total telescope time

Tel./Spec.	Time	Tel./Spec.	Time	Tel./Spec.	Time
OAO 188cm/HIDES	87.5 n	TNG/HARPS-N	16 n	Magellan-Clay/PSF	4 n
CTIO 1.5m/CHIRON	753 h	SALT/HRS	116 h	NOT/FIES	4 n
Euler/CORALIE	40 n	ESO 3.6m/HARPS	4.5 n	OHP 1.9m/SOPHIE	3 n
MPG 2.2m/FEROS	30 n	Subaru/HDS+IRCS	4.5 n	VLT/UVES	3.5 h

Additionally: Radcliffe/GIRAFFE, AAT/UCLES, OUC-50cm/PUCHEROS, Keck I/HIRES, TNG/SARG, Hamilton/HamSpec

Archives: ESO, SOPHIE, ELODIE, KOA, APOGEE

TESS operations summary

- Launched 18.04.2018. Observing since 24.07.2018
- Towards 100% with the second extended mission.
- Currently: sector 83 (Cycle 6)

TESS GI programs of CRÉME targets

- Successful GI applications since Cycle 1
- Current status:
 - 1 sector: 66
 - 2 sectors: 117
 - 3 sectors: 49
 - 4 sectors: 34
 - 5–13 sectors: 51
 - 14-29 sectors: 12
 - Additionally: *Kepler* (24) and *K2*(8) observations *PLATO* LOPS2 (29)

TOTAL: 329 targets

(from 83 sectors) + FFI for 6 targets +12 more expected in C7

Methodology

Results: summary

- ~100 models of DEBs with CRÉME data
- 34 published papers
- 28 CRÉME targets in DEBCat
- Examples of results:
 - Low-mass stars
 - Late-type (sub-)giants (M. Ratajczak)
 - Pulsators of various kinds
 - High-order (N>2) multiples
 - Benchmark star candidates
 - High-mass giants
 - Pre-main sequence (PMS)

DEBCat vs. CRÉME published

Results: The 325

- Mass *M* sin³(i) estimates (not final!) for 650 stars in **325** double-lined CRÉME eclipsing binaries
- **300+** of them with TESS or *Kepler/K2* photometry
- Masses are enough to identify a lot of interesting cases

Results: The 325

Results: Mass precision

• 78 "long-period" (P > 4d) systems with mass error determination

Best case: 0.051+0.058%

Results: Low-mass stars

19 DEBs with two M < 0.9 M_{sun} components (work in progress)

ASAS ID	TIC	RA	DEC	TESS	V
		(°)	(°)	Sectors	(mag)
011328-3821.1	183596242	18.3679518	-38.3510354	2,3,29,30	11.72
012726-4928.4	158582802	21.8579947	-49.4735722	2	11.45
022311+1630.6	408627978	35.7963686	+16.5099728	42,43	12.09
024013+6144.0	50191648	40.0544455	61.7330474	18,59	10.42
024946-3825.6	215258019	42.4419509	-38.4273681	3,4	11.71
030807-2445.6	88479623	47.0291965	-24.7591243	4,31	10.19
032923-2406.1	144539611	52.3463638	-24.1004384	4	9.36
045304-0700.4	9380768	73.2685086	-7.0066604	5	11.13
050816-4449.1	200363294	77.0643897	-44.8193630	4,6,31,32 ^a	10.15
082552-1622.8	409797166	126.4641538	-16.3797396	34	10.29
093814-0104.4	14307980	144.5561535	-1.0745686	8,35,62	12.31
095039-0530.7	78151317	147.6638052	-5.5120566	8	10.07
112122-4736.1	162585265	170.3406886	-47.6009034	10,63,64	10.39
115632+0717.8	380642488	179.1342228	+7.2974779	46,49	9.53
122408-1914.0	423591132	186.0343834	-19.2325385	37	11.41
125516-3156.7	103683084	193.8187276	-31.9462195	10,64	11.51
174044-0746.2	295936907	265.1824243	-7.7702703		10.30
204117-1445.4	327589375	310.3211516	-14.7574544		10.65
212954-5620.1	381857817	322.4749409	-56.3348664	1	11.93

Results: Compact Hierarchical Triples (CHT)

- Short-period DEBs with a third star on a *P* < 1000 d orbit
- Fundamental parameters of up to 3 components

Talk **E12** and poster **EP06** by **Ayush Moharana**

Also: - Moharana et al. 2023 MNRAS, 521, 1908 - Moharana et al. 2024 arXiv:2405.12136

Results: Pulsating stars in DEBs

• Stellar parameters of 16 new DEBs with δ -Sct and γ -Dor pulsators

Results: Benchmarks & long-term stability

- 30 TESS sectors of data analyzed with two different codes
- Four sets of spectroscopic data, 41 spectra
- Variations of results from sector to sector and between spectrographs

See poster **GP29** by **Ganesh Pawar**

Results: Total eclipses

- Spectra taken in totality
- Independent estimate of T_{eff} and [Fe/H] for better age estimate
- δ-Sct, low-mass, sub-giants, giants, post-merger candidate

Future plans and prospects

- Finalize the work on low-mass stars (myself) & δ-Sct and γ-Dor pulsators (T. Pawar)
- Extended studies of CHTs (A. Moharana)
- PLATO benchmarks (G. Pawar)
- Improve mass precision in systems with low number of data
- "Filling gaps" in TESS coverage in Cycle 7

Future plans and prospects

- New PhD position, from October 2025
- Other interesting scientific topics:
 - SB+SB quadruples and doubly-eclipsing systems (w/ T. Merle)
 - "Accelerating" stars and planet/BD detection (see the ADEBBDs poster GP06)
 - High-mass stars

...

- Calibration of the *M-f_{ov}* relation
- Testing "abundance clocks"

THANK YOU

