Tracking ellipsoidal binaries

Milena Ratajczak

in col. with the OGLE Team

ASTRONOMICAL OBSERVATORY UNIVERSITY OF WARSAW

OGLE

1.3-m telescope, Las Campanas

Field of view: 1.4 deg²

~6 000 000 stars in this picture

Optical Gravitational Lensing Experiment

OGLE-IV sky coverage

2 billion stars monitored

Udalski et al., 2015

OGLE ellipsoidal systems

P: 0.08 - 636.71 d I_{amp}: 0.008 - 1.209 mag

Dormant compact objects in binaries

large RV modulation

large ellipsoidal modulation induced by tidal interaction

Dormant compact objects in binaries large ellipsoidal modulation large RV modulation astrometry induced by tidal interaction **OGLE** SS eesa ŚN ASA gaia

Minimum mass ratio

minimum mass ratio MMR

photometric amplitude **only** primary fills the Roche lobe $i = 90^{\circ}$

modified minimum mass ratio mMMR

mMMR < MMR < actual MR

Gomel, Faigler & Mazeh, 2021a

OGLE dormant compact objects search in binaries

24 405 ellipsoidals toward GB

10 956 short-period P< 2.5 d

136 MS stars with large modulations

Ellipsoidals in Gaia DR3

22 914 short-period ellipsoidal

6306 candidates

262 best candidates

- observed variability due to ellipsoidal modulation
- sources too faint for Gaia RV measurements
- to confirm the true nature follow-up is needed

Gomel et al. 2022

Archival data

Gomel et al. 2022

Follow up

RV follow-up of 14 candidates

minimum companion masses of \leq **0.5 Ms** in all cases

unequal-mass contact binaries with starspots

Nagarajan et al. 2023

Follow up with ESO/XSHOOTER & SALT/HRS

Unlike previous studies (e.g. Thompson et al. 2019, Jayasinghe et al. 2021), all selected systems consist of **main-sequence stars**,

which makes the search for compact objects much more promising (e.g. El-Badry & Rix 2022).

FOV 2' x 2', 2MASS

FOV 1' x 1', 2MASS

FOV 1' x 1', DECam

Eccentric ellipsoidal variables

An explanation of such variables was proposed by B. Paczyński (2004, private communication) who suggested that these objects may be ellipsoidal systems with significant eccentricity of the orbits.

Eccentric ellipsoidal variables

at **periastron**: tidal interactions — stellar deformation — brightness variations

rich oscillation spectrum allows for detailed seismic analysis (modeling effects of rotation)

Shape of HB

shape: **i**, ω, e

amplitude: M1, M2, separation at the periastron

Thompson et al. 2012

EEVs collections

Kepler

~170 systems with small amplitude (<1 mmag) Thompson et al. 2012, Beck et al. 2014, 2018, Kirk et al. 2016, Guo et al. 2019, Hambleton et al. 2016, 2018

BRITE

~a few OB-type Pablo et al. 2017, Pablo et al. 2019

TESS

~20 OB-type Kołaczek-Szymański et al. 2021

OGLE

~1000 systems, mostly RGs Wrona et al. 2022a,b

EEVs collections

TEO studies

tidally excited oscillations

result of tidal forcing

(Fuller 2017)

Kepler

~170 systems with small amplitude (<1 mmag) Thompson et al. 2012, Beck et al. 2014, 2018, Kirk et al. 2016, Guo et al. 2019, Hambleton et al. 2016, 2018

BRITE

~a few OB-type Pablo et al. 2017, Pablo et al. 2019

TESS

~20 OB-type Kołaczek-Szymański et al. 2021

OGLE

~1000 systems, mostly RGs Wrona et al. 2022a,b

OGLE search for EEVs

Wrona et al. 2022A, 2022B

EEVs

data from Kirk et al. 2016 & Jayasinghe et al. 2019

EEVs with OGLE

data from Wrona et al. 2022A

EEVs with OGLE

data from Wrona et al. 2022A

OGLE-LMC-HB0254

variable amplitudes and frequencies of TEO

wind-wind collision

Kołaczek-Szymański et al. 2024

OGLE-BLG-HB6312

Simultaneous LC & RV fitting

Spectroscopic analysis

Transfer code: SPECTRUM Model atmosphere: MARCS

> data from MIST models Dotter (2016), Choi et al. (2016), Paxton et al. (2011, 2013, 2015)

LC changes

Eclipse? Lensing? Disk?

RLOF

No matter what value of M1, M2, R1 we choose, the system has the peryastron distance close to RLOF

Possible scenario: in previous evolutionary stages the primary lost the material - disk/wind tracers?

Are dips in LC related to the eclipse by **disk** changing its density?

emission lines (disk / wind)

IR excess in spectra (cold matter)

RLOF

No matter what value of M1, M2, R1 we choose, the system has the peryastron distance close to RLOF

Possible scenario: in previous evolutionary stages the primary lost the material - disk/wind tracers?

Are dips in LC related to the eclipse by disk changing its density?

emission lines (disk / wind)

IR excess in spectra (cold matter)

MESA binary model

If RGB + MS (1.5 Ms and 1Ms), it was born as $e \sim 0.9$ and P >~ 5000 d

No mass transfer

P, e dumping are strongly related to R1; it is difficult to keep e~0.8 during RGB, not mentioning AGB -> RGB scenario preferred

(de/dt) on RGB ~-10⁻³ / 1000 years (dP/dt) on RGB ~-0.5 d / 1000 years (we won't see it in LC)

Period-luminosity relation

Extinction free Wesenheit index WJK

