

Yunnan Observatories, Chinese Academy of Sciences

The statistical properties of early-type stars from LAMOST DR8

Collaborators: Chao Liu, Luqian Wang, Jinliang Wang, Bo Zhang, Kaifan Ji, ZhanWen Han, and XueFei Chen

> Yanjun Guo 12.09.2024

Outline

Introduction Methods Results Summary and conclusions

Early-type stars

- Massive and luminous
- Mainly comprised of O-, B- and A-type stars
- Contribute to the universe's reionization
- Enrich metallicity in the Galactic environment
- Likely evolve to compact binary
 - Double black holes
 - Double neutron stars
 - Neutron star-black hole

Statistical/multiplicity properties early-type stars

- Intrinsic Binary fraction
- Orbit period distributions
- Mass-ratio distribution

Binary Fraction and Metallicity

• Negative Correlation:

- Raghavan et al., 2010; Tian et al., 2018; Liu, 2019 observed an anticorrelation.
- Positive Correlation:
- Carney (1983) and Hettinger et al. (2015) reported a positive correlation.
- No Correlation:
- Latham et al. (2002) found no correlation in their sample.

This inconsistency highlights the ongoing debate

f_{bin}	Number of samples	Spectral type	reference
0.34 ± 0.02	454	FGK	Raghavan et al. (2010)
0.46 ± 0.03	226	В	Chini et al. (2012)
0.58 ± 0.11	408	В	Dunstall et al. (2015)
0.42 ± 0.04	161	0	Aldoretta et al. (2015)
0.50 ± 0.03	194	0	Sota et al. (2014)
0.51 ± 0.07	45	0	Kobulnicky et al. (2014)
0.68 ± 0.03	243	0	Chini et al. (2012)

Limit of other work:

- Small sample sizes
- Sample is heterogeneous

Limitations in Paper I:

- Observations cadence introduces errors in estimating the intrinsic binary fraction
- Mainly two observations per star

Need for Improved Data:

- With the recent release of LAMOST DR8, we have access to more data.
- Examine uncertainties in the method used in Paper I.

Current Study Aim:

- Improve the analysis of binary fraction for early-type stars in the LAMOST DR8 database.
- Use an enlarged sample size (886 stars) with higher observational cadence.
- Determine the dependencies of binary fraction and metallicity.

Data

Low Resolutio	n			
Observed Plates: 5	5923	Total Spectra: 11,817,430	Star: 11,473,644	
Galaxy: 263,444		QSO: 80,342	AFGK Stellar Parameters: 7,478,650	
Medium Resol	ution			
	Medium-resolution	non time-domain data	Medium-resolution time-domain data	Total
Total spectra	2,211,338		8,274,878	10,486,216
Star parameter	1,103,320		1,045,150	2,148,470

LAMOST

- 4-meter quasi-meridian reflecting Schmidt telescope
- Both medium and low-resolution spectrographs
- Medium Resolution Survey (MRS R=7500)
 - Began from 2018
 - Wavelength range
 - Blue arm: 495 -535 nm
 - Red arm: 630 -680 nm

Data

Sample

- Guo et al. 2022: Identified 9,382 early-type stars
- Guo et al. 2021: Derive the atmospheric parameters
- Zhang et al.2022: A robust self-consistent method to measure the RVs

Sample Selection and Grouping

• Sample Selection:

Selected 886 stars with more than six observations from Guo et al. (2021)

• Grouping Criteria:

Stars are grouped based on three observables:Teff,[M/H],v sin i

• Grouping Strategy: Divided into low, medium, and high groups

Criterion for the binary (Sana et al. 2013) (Dunstall et al. 2015; Mahy et al. 2021; Banyard et al. 2021)

A star is a binary if its RVs satisfy:

$$\frac{|v_i - v_j|}{\sqrt{\sigma_i^2 + \sigma_j^2}} > 4 \text{ and } |v_i - v_j| > C$$

- $v_i(j)$ is the RV measured from the spectrum at epoch i(j)
- i(j) is the associated uncertainty

Threshold C: filter stars with pulsations

- O-type stars:C=20 km/s Sana et al. 2012
- B-type stars:C=16 km/s Dunstall et al. 2015

Correction for the binary fraction

Construct two synthetic cumulative distributions(CDF) (Sana et al. 2013)

Parameter	Power law	Parameter Range	Power Index	Index Range	Step
P(d)	$f(P) \propto P^{\pi}$	1 - 1000	π	-2.50- 2.50	0.1
q	$f(q) \propto q^{\gamma}$	0.1 - 1.0	γ	-4 - 1.00*	0.1
$f_{\rm b}^{\rm in}$	-	-	-	0.20 - 1.00	0.04

Global merit function (GMF)

$$\Xi' = P_{\rm KS}(\Delta RV) \times P_{\rm K} \Delta MJD} (\Lambda \mu JD) \times B(N_{\rm bin}, N, f_{\rm bin}^{\rm simul})$$

Validation

Self-consistency test

Sana et al. (2013): π =-0.40±0.4, κ =-0.9±0.4, fb=52±5% This work: π =-0.45±0.3, κ =-1.0±0.4, fb=51±4%

Applicability of the GMF for our sample

Impact of observational frequency and sample size

Both big sample size and a large observational frequency would reduce the uncertainty of the method

- Same sample different observational frequencies
- Same observational frequencies different sample
- Real sample

Results

- Binary Fraction
- $76\% \pm 10\% \ 60\% \pm 10\% \ 48\% \pm 10\%$

Results

O-B3 Type Stars: Consistent with Galactic O-type stars (Sana et al. 2013)

Due to fewer observations

- Larger fb than OB stars from LAMOST DR5 (Luo et al. 2021)
- Lower fb in Guo et al. (2022)

Results

- Binary fraction increases with [M/H].
- Correlation between the statistical parameters and v sin i.

Summary

- Collect 886 early-type stars with more than six observations from LAMOST DR8, divide the sample based upon effective temperature, the metallicity [M/ H] and the projection rotation velocity.
- Intrinsic Binary Fraction:
 - Increases with Teff and is positively correlated with metallicity
 - Projection Velocity: No correlation with Vsini
- Orbital Period & Mass Ratio:
 - No clear correlation with Teff or [M/H], potentially due to short observational cadence
- Examined **uncertainties** related to sample size and observation frequency
 - Found that larger sample sizes and higher frequencies reduce statistical uncertainties

THE END

Thank you !

YNAO Invites Global Talents for Excellent Young Scientists Fund (Overseas) of NSFC Talent programs from CAS and Yunnan Province

Funding and Supports (NSFC & CAS-BR)

- Senior position
- Research start-up fund (1-3 million RMB)
- Living subsidy (>1 million RMB pre-tax)
- Competitive salary and benefits
- A transitional apartment

http://english.ynao.ac.cn/recurit

Other job positions (YNAO-Phoenix program)

- Talent Recruitment (Full-time / Flexible)
- Young Science and Technology Talents
- Special Research Assistants
- Postdoctoral Fellows (0.2–0.3 million RMB/yr pre-tax

& a free apartment)

Contacts: Ms. Zhao, Email: zxj@ynao.ac.cn, Tel:(86)871-63920899

Name	Comment	
P	orbital period	
q	mass ratio	
e	eccentricity	
m_1	mass of the primary	
i	angle of inclination	
ω	longitude of the periastron	
T_0	the time of periastron passage	

