Accurate dynamical masses from binaries with extreme brightness ratios

Image credits: NASA

The EBLM project

Eclipsing Binary - Low Mass

- Eclipsing FGK-M binaries EBLM I Triaud et al. 2013
- Jupiter-like transit light curves
 - WASP
 - TESS
 - CHEOPS ...

WASP, Pollacco et al. 2006

Daniel Sebastian, University Of Birmingham

- High contrast binaries (ΔF ~1e-4 (SB1))
- Radial velocity survey ~ 200 EBLM
 Optical spectra (CORALIE, HARPS, ESPRESSO, SOPHIE)

EBLM IV - Triaud et al. 2017

EBLM = Eclipsing Binary – Low Mass

1

Main Goal of the EBLM project

Why low-mass stars?

- $< 0.35M_{\odot}$ low-mass Main-sequence
- Fully convective cores
 - improve models for stellar masses and radii
 - Radius inflation? e.g. Spada et al. 2013
 - Characterisation of terrestrial planets
 - Trappist-1, LP 890-9c, SPECULOOS-3b, ...
 - Planet masses, radii & atmospheres

- Good agreement to stellar evolutionary models
 - Radii few percent
 - Effective Temperatures ~100K

EBLM XI - Swayne et al. 2024

EBLM = Eclipsing Binary – Low Mass

- Detection of circumbinary planets
- e.g. TOI-1338 / BEBOP-1 / EBLM J0608-59

(Talk by Lalitha Sairam)

EBLM = Eclipsing Binary – Low Mass

Primary parameters are essential

- Homogenous characterisation of 179 FGK-M primaries BEBOP V Freckelton et al. 2024
 - Using >4500 high-resolution spectra
 - Primary metallicities, T_{eff}
 - Primary masses and radii (MIST)

Primary parameters are essential

- Homogenous characterisation of 179 FGK-M primaries BEBOP V Freckelton et al. 2024
 - Using >4500 high-resolution spectra
 - Primary metallicities, T_{eff}
 - Primary masses and radii (MIST) model dependent

EBLM often not on binary catalogues such as DEBcat Southworth 2015

- Stellar density from eclipse light curves EBLM XII Davis et al. 2024
 - Accurate M₁ using R₁ (Gaia)
 - relies on R₁

EBLM = Eclipsing Binary – Low Mass Daniel Sebastian, University Of Birmingham

Dynamical masses

Turning the SB1 into SB2
Model independent masses!
Lower contrast in NIR (SPIRou)
e.g. EBLM J0113+31
Maxted et al. 2022

Combined Cross-correlation

- in secondary rest-frame (vary semi-amplitude)

- Primary signal main source of noise
- Not detectable in optical spectra (?)

Dynamical masses from HRCCS

Planet atmospheres contrast (1e-5) detected!

nature

Explore content v About the journal v Publish with us v Subscribe

nature > letters > article

Published: 27 June 2012

The signature of orbital motion from the dayside of the planet τ Boötis b

Matteo Brogi 🖂, Ignas A. G. Snellen, Remco J. de Kok, Simon Albrecht, Jayne Birkby & Ernst J. W. de

THE ASTRONOMICAL JOURNAL, 161:209 (27pp), 2021 May © 2021. The American Astronomical Society. All rights reserved.

EBLM = Eclipsing Binary – Low Mass

https://doi.org/10.3847/1538-3881/abe768

A Near-infrared Chemical Inventory of the Atmosphere of 55 Cancri e

Emily K. Deibert^{1,2}, Ernst J. W. de Mooij³, Ray Jayawardhana⁴, Andrew Ridden-Harper⁴, Suresh Sivanandam^{1,2}, Raine Karjalainen^{5,6,7}, and Marie Karjalainen⁵, Suresh Sivanandam^{1,2}, and Karjalainen⁵, and Marie Karjalainen⁵, Andrew Ridden-Harper⁴, Suresh Sivanandam^{1,2}, and Andrew Radie Karjalainen⁵, suresh Sivanandam^{1,2}, and Suresh Sivanandam^{1,2}, an

Detrending in HRCCS

In IR:

Singular value decomposition (SVD)

Deibert et al. 2021

EBLM = Eclipsing Binary – Low Mass

High contrast binaries

TOI-1338 / BEBOP-1 / EBLM J0608-59

- 1.1 + 0.3 M_{sun} eclipsing binary
- contrast ratio 0.2% (SB1)
- 103 ESPRESSO@VLT spectra

EBLM = Eclipsing Binary – Low Mass

High contrast binaries

High contrast binaries

TOI-1338 / BEBOP-1 AB / EBLM J0608-59

- CCF with line mask
- 11 σ detection of the M-dwarf! (Secondary SNR < 0.1!)
- Signal is still intact after SVD!

EBLM = Eclipsing Binary – Low Mass

Measuring accurate masses

Saltire model Sebastian et al. 2023

• Available on Github

• Full noise analysis

Measuring accurate masses

Saltire model Sebastian et al. 2023

• Available on Github

• Full noise analysis

• $0.307 \pm 0.003 \text{ M}_{\odot}$ (1%)


```
EBLM XIII - Sebastian et al. 2024
```


• Fully consistent (1 σ) with standard SB1 measurements Kostov et al. 2020

To the bottom of the main-sequence

 $\mathsf{CRIRES}^{\scriptscriptstyle +}$ observations, K-band

- Strong telluric + primary contributions
- 3 EBLM with $M_2 \sim 0.1 M_{\odot}!$
- metallicities, masses and radii!

Summary

- EBLM project Primary characterisation is important
 - Model dependency questioned
- Entering a new phase
 - Turning SB1 to SB2 dynamical masses
 - Saltire model for accurate mass estimation
 - Validate previous results
- Pushing towards lowest mass stars using IR observations
- Applicable to other high-contrast binaries -> red giants

Papers:

Saltire: a model to measure dynamical masses for high-contrast binaries and exoplanets, 2024MNRAS.52710921S

The EBLM project - XIII. The absolute dynamical masses of the circumbinary planet host TOI-1338/BEBOP-1, 2024MNRAS.530.2572S

Outline

- Introduction EBLM project
- Dynamical masses in the optical
- Expanding into to bottom of the main-sequence