github.com/mshemuni/

octans

Observed CalculaTed diagrAm aNd lightcurveS

Mohammed Niaei^{1,2} Ozgur Basturk³

- Ankara University, Graduate School of Natural & Applied Sciences
 TÜBİTAK National Academic Network and Information Center (ULAKBİM)
 Ankara University, Faculty of Science, Astronomy & Space Sciences Dept.

What is it?

Octans is a software package designed to **simplify** the acquisition and analysis of **light curves** to derive their **timings of extrema** with **different techniques.**

How it does what it does

Portal

- XMatch
 - O Xmatchs the given coordinate
- Retrieve light curve
 - O Kepler
 - O TESS
 - O ASAS
 - 0 ...

And the best part, It returns **XLightCurves**

Portal Example

Retrieve a list of light curves

```
from octans import Portal

# portal = Portal.from_coordinates(281.28812083, 42.45108092)
portal = Portal.from_name("kepler-8")
xlcs = portal.kepler()
```

How it does what it does

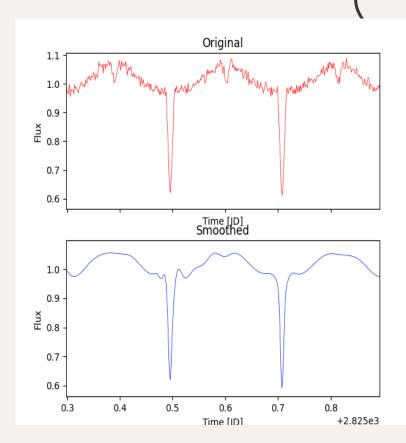
XLightCurve

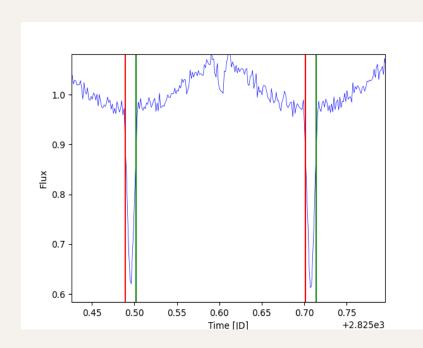
- Analyse
 - O Smooth light curves
 - O Find boundaries
 - O Fold
 - O Time & Flux Correction
- Minima
 - O Curve fit
 - O Periodogram
 - O Kwee van Woerden (1956)
 - O Cross correlation with a template
 - O Thoroughgood (2004) and more...
- Visualize
 - O Display light curves

Load light curve data

```
from octans import XLightCurve
import pandas as pd

data = pd.read_csv("Light/Curve/File")


xlc = XLightCurve(
    data["TIME"], data["FLUX"], data["FLUX_ERROR"]
)
```


Let's **smooth** a light curve

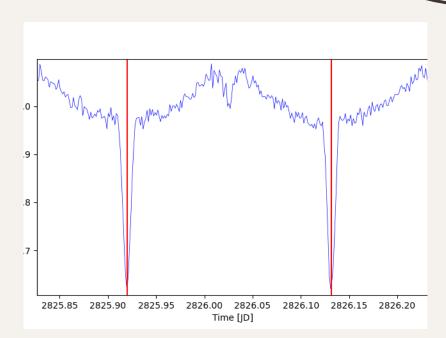
```
smooth_xlc = xlc.smooth_b_spline(s=3)
fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True)

xlc.plot(ax=ax1, color="red")
smooth_xlc.plot(ax=ax2, color="blue")

plt.show()
```


or find boundaries

```
boundaries = xlc.boundaries_extrema()


fig, ax = plt.subplots()
xlc.plot(ax=ax, color="blue")

for boundary in boundaries:
    ax.axvline(boundary[0], color="red")
    ax.axvline(boundary[1], color="green")

plt.show()
```

and find timings of minima

```
minimas = xlc.minima_fit()
fig, ax = plt.subplots()
xlc.plot(ax=ax, color="blue")
for minima in minimas[3:5]:
    ax.axvline(minima.time.jd, color="red")
#Minima1: 2825.9197446528474 ± 0.0015278394522997567
#Minima2: 2826.1316128322815 ± 0.0006916204743035943
plt.show()
```


What to do next?

- * Robust handling of **measurement uncertainties**
- * More methods for extrema measurements
- * Improved **GUI**
- * Documentation
- * O-C Portal. ability to retrieve minimas from databases and create publish-quality O-C diagrams

Every help appreciated...

Thank You!

Do you have any questions? niaei@pardus.org.tr https://github.com/mshemuni/octans/issues

Poster Number: FP04