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Photometric mass ratio of contact binaries with machine learning

Light curves (LCs) of close binary stars are relatively simple to describe when considering a small number of model parameters. However, systems with partial 
eclipses lead to a more complicated solution - because the mass ratio (q) of components correlates with the orbital inclination (i). In today's era of precise spaceborne 
photometry (e.g. TESS) we can spot subtle differences between individual light curves that could determine the investigated system's mass ratio (q), fill-out parameter (f), 
and inclination (i). We have created a database of synthetic light curves to train a simple machine learning model using Python’s Sci-Kit to describe the shape of a 
normalized light curve, and then find probable values of q, i, and f parameters. We have also investigated the effect of unknown third light (l3) in the system.

Results

We have compared all the parameters q, f, i, l3 with those known in literature (see [1]) for 
all models. To compare, which model worked best for our sample of 14 stars, we have 
compared predicted “best” values and the spread of predictions (errorbars in Fig. 3), and 
computed correlation coefficients (see Tab. 1). If we are interested only in the mass ratio q, we 
have tabulated the predictions for individual targets (Tab. 2). The colors in tables and Fig. 3 
are consistent with model used.

Data sets

For all TESS LCs we have applied the procedure as described in the data preparation 
and ended up with Fourier coefficients ai for each LC. Then we utilized our code UNiQUE 
(hereafter models U) in comparison to the XGBoost machine learning (hereafter models M). 
We have created several subsets (for both models):
● A - the initial set with normalized and detrended LCs,
● B - Because many LCs in set A were asymmetric in respect to the phase 0.5 (this was 

required for models U. Also models M were trained on symmetric data),  we have extended 
set A by artificial LCs. LCs from set A were cut in half by phase φ = 0.5, and new LCs were 
created from phase parts ⟨0, 0.5) and ⟨0.5, 1) by mirroring around phase φ = 0.5.

● C - Since the asymmetry in LC maxima is caused by the O’Connell effect due to spots, for 
this subset, we have selected (from dataset B) artificial symmetric LCs with higher fluxes in 
maxima (as if the cold spot was not present).
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Preparation of data

We have selected 14 targets (see Tab. 2) with precisely measured mass ratio qspec by 
spectroscopy such as to cover maximum range of q. Values of i, f, and l3 were found in 
literature (for a complete list see [2]).

For our targets, we have found all available TESS data from all sectors with 120-s and 
600-s cadence. From each individual sector, we have constructed a phased LC. We have used 
sigma clipping on a running box cart to eliminate outliers. Afterwards, we used a custom 
Savitzky-Golay filter (using SciPy) with parameters automatically adjusted for each LC to 
smooth the phased LC. The next step was to use our code UNiQUE [1] to normalize the LC and 
calculate a set of 11 (Fourier) coefficients ai that represent the shape of the LC as:
I(φ    ) = a0  + Ʃi ai cos(2πiφ). All subsequent analysis was done according to these coefficients.

Fig.1 – Illustration of the cleaning 
and smoothing process. TESS 
SPOC flux LC was cleared of 
outliers (blue) and the resulting LC 
(orange) was smoothed with 
Savitzky-Golay filter (with para-
meters in the upper right corner). 
This smoothed curve (black) was 
then fitted with the I(φ) function to 
obtain the set of ai coefficients.
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Model and training

Our pre-computed library for training consisted of 11,895 LCs saved as 11-tuple coupled 
with 3-tuple of parameters q, f, i. We have extended this set by another 5 levels of l3 making it 
71,370 entries in total. For better handling the parameter limits, we have converted the 
inclination i into sin (i). We chose the XGBoost model for its high performance, ability to handle 
heterogeneous tabular data effectively, and resistance to overfitting.

XGBoost builds a sequence of decision trees in a gradient boosting framework, where 
each tree corrects the errors of the previous one, rather than combining predictions from 
independent models. This approach allows XGBoost to capture complex nonlinear 
relationships between the input data and target variables, making it an optimal choice for 
regression tasks in astronomical research. The model was trained using a 70:30 train/test split, 
with the maximum tree depth max_depth = 7. This value was chosen by trial and error as a 
balance between capturing complex patterns in the data and avoiding overfitting.

To evaluate the model's performance, we used the root mean square error (RMS) as a 
metric. The results indicated successful training, with RMS values on the test set as follows: 
qRMS = 0.01507, fRMS = 0.04081, sin (i)RMS = 0.00566, and third light contribution l3,RMS = 0.05621. 
For the training set, the RMS values were slightly better: qRMS = 0.01084, fRMS = 0.02451, 
sin (i)RMS = 0.00370, and l3,RMS = 0.03875. The close match between training and test RMS 
values suggests that the chosen model complexity, guided by the max_depth parameter, 
effectively prevented overfitting while ensuring high predictive accuracy (see Fig. 2).

Fig. 2 – Testing the prediction of our XGBoost model for mass ratio q (left panel) and inclination i (right 
panel). On the x-axis we have values corresponding to all entries in the test subset, on the y-axis there 
are corresponding values predicted by the trained model. Colorbar codes different values of third light (l3) 
contribution in the respective LC.
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Out of 14 stars in our sample, 6 
systems are totally eclipsing. Only FT 
UMa and V753 Mon are classified as EB 
subtype. Our results show, that for 
systems with total eclipses, we get 
better predictions. So far we have not 
identified the single best approach in 
choosing a reliable model. Further 
analysis of O’Connell effect, shapes of 
minima of LCs, and larger sample of 
stars may be needed.

model q i f l3

UA 0.978 0.955 0.708 0.083

UB+l3 0.857 0.973 0.573 0.547

MA+l3 0.787 0.952 -0.548 0.096

MB+l3 0.839 0.896 -0.618 0.759

MC+l3 0.897 0.853 -0.702 0.999

Tab. 1 – weighted corelation coefficients of predicted 
different parameters vs. “true” parameters.

Object qtrue UA UB+l3 MA+l3 MB+l3 MC+l3

AG Vir 0.341(21) 0.288[38] 0.300[75] 0.296[8] 0.300[62] 0.261[123]

AW UMa 0.075(5) 0.075[0] 0.088[13] 0.089[10] 0.089[187] 0.089[374]

DU Boo 0.234(35) 0.225[75] 0.200[163] 0.190[0] 0.226[30] 0.250[0]

EL Boo 0.248(7) 0.350[275] 0.275[450] 0.839[30] 0.839[153] 0.869[306]

EQ Tau 0.442(10) 0.575[263] 0.638[250] 0.498[103] 0.566[308] 0.566[126]

FI Boo 0.327(9) 0.970[75] 0.950[313] 1.000[5] 0.970[252] 0.651[481]

FT UMa 0.984(19) 0.538[463] 0.363[463] 0.941[14] 0.802[153] 0.682[65]

SW Lac 0.776(14) 0.550[50] 0.675[250] 0.867[57] 0.843[82] 0.804[115]

SX Crv 0.066(3) 0.225[125] 0.350[463] 0.186[0] 0.186[388] 0.186[776]

V1191 Cyg 0.107(5) 0.089[38] 0.075[263] 0.083[85] 0.105[408] 0.105[814]

V523 Cas 0.516(8) 0.488[13] 0.625[275] 0.777[25] 0.777[98] 0.747[94]

V753 Mon 0.970(11) 0.675[338] 0.463[100] 0.817[9] 0.812[90] 0.812[180]

VW LMi 0.423(21) 0.281[63] 0.513[375] 0.422[0] 0.422[119] 0.422[238]

W UMa 0.484(3) 0.433[13] 0.538[163] 0.985[32] 0.985[170] 1.000[339]

Tab. 2 – medians of best predictions of mass ratio q in different models (colored background) 
for each of our test system with [ (max - min)/2 ] value. Bold-face values indicate good match. 
Colors of models correspond to those in Fig. 3

Fig. 3 – comparison of predicted values (y-axis) vs actual values (x-axis) of parameters (columns from 
left to right): mass ratio q, inclination i, fill-out factor f, and third light l3 for different models (rows 
denoted by color) for individual stars (points). Compare with trained model in Fig. 2.

This work follows our previous 
attempt [2] to use only the code 
UNiQUE to find if we can 
sufficiently predict mass ratio q 
and inclination i of a close 
binary companions from the 
eclipsing LC.
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