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N
Plan of the talk

@ Theory and observations

e Disentangling of spectra
— Fourier and wavelength domain

e Challenges of observational surveys

@ Treatment of few-epochs spectra
— example of 68 u Her
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Theory and observations

Why to observe stars?
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Theory and observations

Theory should be inspired and
proved by observations

Observation should be motivated
and interpreted by theory

Interpretation is biased by model

02

o1

A more sophisticated model need
not be better = -
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Multiple stars

Observations of binaries = physical parameters of stars
x Proximity effects: tidal, reflection, mass exchange

Roche model: hydrostatic equilibrium (VP = —pV®)
= homogeneity on equipotentials = varying g ‘
Von Zeipel's theorem: diffusion approximation
= gravitational darkening ( Tog ~ g%2%)
= no hydrostatic equilibrium = no homogeneity .
= meridional + longitudinal circulations

Anisotropic stellar winds — Roche-lobe overflow,
asynchronous rotation, pulsations
= 3d - radiation hydrodynamics

Spectroscopy = size of the system x blending of components spectra
Disentangling based on simplified model is a tool for spectra interpretation
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Disentangling

Disentangling of spectroscopic binaries

(O bserved spectra)

/

‘ RV measurement‘

Radlal ve|OCItIeS " Separation of spectra

A

‘Solution of RV—curves‘

( Parameters ) CSpectra ofcomponents)
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Disentangling

Disentangling of spectroscopic binaries

(O bserved spectra)

/

‘ RV measurement‘

/N

Radial velocities ‘ Separation of spectra

/ Dlsentanglmg
‘Solutlon of RV/CWV \

( Parameters CSpectra of components)
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Disentangling

Disentangling of spectroscopic binaries

(O bserved spectra)

Croansee)

‘ RV measurement‘

N

(Radial velocities) veIOCItIeS \ ~| Separation of spectra

Y
Dlsentanglmg
‘Solutlon of RV- curves‘
Model spectra

( Parameters )<—‘F|t of spectrak—(Spectra of components)
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Wavelength-domain and Fourier disentangling

1994 K.P. Simon & E. Sturm A&A 281, 286
1995 P. Hadrava A&AS 114, 393

I(x,t;p) = le—vjtp x =cln(A/ )

I(x, t;p) = Z/ ) # Aj(x, tip), Aj(x, t;p) = d(x — vj(t; p))

i(y, t:p) = Z WAy, tp)s Ajly, £ p) = exp(iyvj(t; p))
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Disentangling

Comparison:

/ Numerical efficiency = possibility of generalizations
X Need of interpolation into equidistant logarithmic scale
X Weighting of pixels — weighting of Fourier modes

\/ Edge effects
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Spectroscopic surveys

Photometric and astrometric surveys
— spectroscopic follow up

Spectroscopic surveys
— e.g. Gaia, SDSS, LAMOST
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ABSTRACT

A suite of spectroscopic surveys is producing vast sets of stellar spectra with the goal of advanc
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ipelines treat them as single stars. For sets of multi-epoch spectra, spectral disentangling is a powerful

focused on

.mwmu.mn that accounts for se

000; that few epochs preclude unique orbit fit

Giraffe”. This code

aspects of few-cpoch spectra from Ia
determination of starting guesses: that some of the most extensive spectroscopic surveys ha

are smooth. We describe the implementation of this code and show with simi
an work for hot and cool stars at R % 2000, Morcoxer,

serve 10 explore new re

ere, we present

 surveys: that vast sample sizes
resolution of

that one needs effective regularization of the disentangled solution

d spectra how well
we verify the code on two established binary systems.

nes in survey disentangling in search of massive stars with

masive dark companions,forexample, the % 200000 ho tarsof the SDSS- srvey

Key words: techniques: spectroscopic - software: development ~ binarics: spectroscopic - stars: black holes.

Al stars o stellar remnants is
fod of less than a fe

phase, s more e th evelved pliasesthtwil el com
pactobjects (such as whi
affects nucleosynithesis, the formation

deafs, eatron sars,and black holes); it

annels of supernovae, and
the interpreation of photomeric, astromelric, o spectroscopic sky
surveys. And massive binaries - or ther descendants - ar the most
prominent and frequent source of gravitational waves s0 far (e.g.
Abbort et al. 20:

Most of these systems cannot be spatiallyresolved, with projected
1 mas. Howeser,

orbital velocities

e the constiuents of such multipl stellr
ce. especially if spectra at different orbital
phases exist. We commonly categorize spectroscopic binaries o
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- Disentangling suitable for processing

of data from spectroscopic surveys

— Problems:

few epochs

low resolution

low S/N

random phase coverage

— RVs instead of parameters

— wavelength domain
— cross-correlation with templates
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Example of binary 68 u Her
HD 156633, HIP 84573
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The chemic:

composition of stellar photospheres in mass-transferring binary systems is a

d preserves
information on the components” history. The binary system u Her belongs to a group of hot
Algols eing B stars, lated the the two.

u\mp\nmm\ by the technique of spectal isentangling of a new seies of 43 high-resolution

he system
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31600 £ 0K, Fo the scondry the msslosing i) e fnd Mo = 279 & 0.12Mo
Ry =426+ 0.06Re and Ty p = 12600 550 K. A non-local thermodynanic equilibrium
s of h ey s s phe vl deiaon i heshundances of iogenand
carbon from the standard cosmic abundance pattern in accord with theoretical expectations

sis processing. From a grd of calculated evolutionary models the be
match to the observed properties of the stars in u Her enabled tracing the initial prope
and history of this binary system. We confirm that it has evolved according (0 case A mass

h CN=09,

for CNO nucleosynth

 prima =0,
evolutionary calculations and indicates strong mixing in the early evolution of the secondary
component which was originally the more massive of the two. The composition of the

i wm’nmcmmv\xhlhruurmurannnnnlnm»lr.ummnhclm I propeties of u Her
system, but requires spectra of a higher signal-to-noise ratio,

Key words: binaries: eclipsing - binaries: spectroscopic —stars: fundamental parameters -
stars: individual: u Her.
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68 uHer
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68 uHer

Kolbas+ 43 spectra 4 spectra
2.05102685(68)  2.050966(4) _ 2.050933(11)
47611.5007(15)  52302.226(2)  52302.227(3)
04.6+2.3 99.10(6) 97.98(16)
267.4+3.3 273.16 268.99

0.354 0.363(8) 0.364(2)
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T1 = 21350K

T, = 11090K
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R ~ 2000

6550 6600
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Conclusion

@ Disentangling is a useful tool for interpretation of data from
spectroscopic surveys

e Disentangling of orbital parameters is preferable to disentangling of
RVs

@ It is desirable to combine the disentangling of spectra with light-curve
solution of data from photometric surveys

Thank you for your attention
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