The present and the future in modeling eclipsing binary stars

Andrej Prša Villanova University

Binary and multiple stars in the era of big sky surveys Litomyšl, CZ, Sep 9-13, 2024

Is eclipsing binary science (still) popular?

ADS query `title: "eclipsing binaries"` on Sep 9, 2024

Is eclipsing binary science popular?

ADS query `title: "eclipsing binaries"` on Sep 9, 2024

Is eclipsing binary science popular?

ADS query `title: "eclipsing binaries"` on Sep 18, 2024

Is eclipsing binary science popular?

ADS query `title: "eclipsing binaries"` on Sep 18, 2024

yes, binaries are still important!

yes, binaries are still important!

(also made evident by the number of young people here!)

Binaries are good because ...

yet it won't work without good models...

What are the makings of a good modeler?

- generality
- accuracy fidelity
- reproducibilitypracticality

- ease of use
- open source
- documentation
- tutorials, workshopsdisambiguation

What are the makings of a good modeler?

- generality
- accuracy
- fidelity
- reproducibility
- practicality

- ease of use
- open source
- documentation
- tutorials, workshops
- disambiguation

What are the makings of a good modeler?

- well versed in theorygood grasp of statisticscan read the code
- can apply the code sanely
- can interpret the results critically

- familiarity with the literature
 thinking out-of-the-box
 working with others
 learning from others

- having fun doing science

contact binary in thermal equilibrium

contact binary out of thermal equilibrium

Δ

contact binary in thermal equilibrium

contact binary out of thermal equilibrium

this is clearly an unphysical circumstance!

(a) original mesh without mixing, where the secondary star is 5% cooler;
(b) envelope dominated by radial mixing that scales linearly with neck distance;
(c) envelope dominated by lateral mixing that scales with distance from the equator;
(d) envelope dominated by magnetic activity that is mixed on the spot timescales.

Number of papers with EB solutions better than 3%: ~500

Typical time to reduce and analyze 1 eclipsing binary: 1-2 weeks

Observational data that allow accurate modeling: ~ 20,000

Number of papers with EB solutions better than 3%: ~500

Typical time to reduce and analyze 1 eclipsing binary: 1-2 weeks

Observational data that allow accurate modeling: ~ 20,000

Expected number of EBs by large surveys until 2025: ~ 10,000,000

Number of papers with EB solutions better than 3%: ~500

Typical time to reduce and analyze 1 eclipsing binary: **1-2 weeks**

Observational data that allow accurate modeling: ~ 20,000

Expected number of EBs by large surveys until 2025: ~ 10,000,000

Projected number of astronomers to finish the job by 2125: ~ 12,500

Number of papers with EB solutions better than 3%: ~500

Typical time to reduce and analyze 1 eclipsing binary: **1-2 weeks**

Observational data that allow accurate modeling: ~ 20,000

Expected number of EBs by large surveys until 2025: ~ 10,000,000

Projected number of astronomers to finish the job by 2125: ~ 12,500

Modeling EBs correctly is the main bottleneck in stellar astrophysics

The EBAI project

How about in the other direction?

2 minutes does not sound like a lot ...

2 minutes does not sound like a lot ... until you have to do it millions of times.

2 minutes does not sound like a lot ... until you have to do it millions of times. In consequence, we cannot do this without high performance computing.

2 minutes does not sound like a lot ... until you have to do it millions of times. In consequence, we cannot do this without high performance computing. Unless, that is, if we can "shave off" 6-7 orders of magnitude in runtime.

Forward model with PHOEBE: ~2 minutes Forward model with the BPN: ~10 μs

2 minutes does not sound like a lot ... until you have to do it millions of times. In consequence, we cannot do this without high performance computing. Unless, that is, if we can "shave off" 6-7 orders of magnitude in runtime.

The question is: can BPNs stand in for the physical model adequately?

2 weeks on HPC \rightarrow ~10 seconds + I/O

The question is: can BPNs stand in for the physical model adequately?

The question is: can BPNs stand in for the physical model adequately?

2 weeks on HPC \rightarrow ~10 seconds + I/O

The best part? We don't even need BPNs!

We can achieve the same by multi-dimensional linear interpolation on a grid.

The question is: can BPNs stand in for the physical model adequately?

2 weeks on HPC \rightarrow ~10 seconds + I/O

The best part? We don't even need BPNs!

We can achieve the same by multi-dimensional linear interpolation on a grid.

Thank you for your attention! Questions? Comments? Bring 'em on!