Newly identified compact hierarchical triple system candidates using *Gaia* DR3

Donat R. Czavalinga, Hungary

HUN-REN-SZTE Stellar Astrophysics Research Group

D. R. Czavalinga, T. Mitnyan, S. A. Rappaport, T. Borkovits, R. Gagliano, M. Omohundro, M. H. K. Kristiansen, A. Pál

æ

Hierarchical triple systems

Figure 1: Configuration of hierarchical triple systems

Hierarchical triple systems

- contain 3 stars
- bound by gravitational force
- for long-term stability it is important to orbit in hierarchical configuration
- hierarchical configuration: one of the stars is far away from the other two

< □ > < 同 >

Importance in astrophysics

Highly accurate parameters can be used to refine stellar evolutionary models and to study the formation and evolution of such systems.

Possible progenitors of:

- Type la supernovae
- compact binary objects

Compact hierarchical triple systems (CHTs)

The outer period of CHT systems is below \sim 1000 days The dynamical perturbations can be strong in these systems, they can make a significant changes in short timescales

We only knew a relatively small amount of these systems (roughly 500) before this study

Sac

イロト イポト イヨト イヨト

How can we search for compact hierarchical triple systems?

Hierarchical triple systems

Sac

・ロト ・ 同ト ・ ヨト

Detection

Similar methods can be used to detect triple systems as binary stars. The inner binary and the third component can be detected by several methods.

Astrometric

The motion of a star around its centre of mass is detected using astrometric methods. Typically, it is possible to detect the outer, wide orbit.

Spectroscopic

It is detected by the shift of the spectral lines in the spectrum of an unresolved binary.

Photometric

Detect changes in the brightness of unresolved stars due to eclipse and/or ellipsoidal variations. For triple systems: Light Travel Time Effect (LTTE) or dynamical effect in Eclipse Timing Variations (ETVs) on the O-C diagram

Э

イロト イヨト イヨト

Gaia Data Release 3

The Data Release 3 (DR3) was published on 13 June 2022, covering about 34 months of data from 15 July 2014 to 28 May 2017. DR3 contains:

- full astrometric solutions for 1,46 billion objects
- photometric measurements for 1 billion objects
- median radial velocity measurements for 33 million stars
- non-single star [NSS] solutions

In previous data releases, each point source was treated as an individual star, but even for Gaia DR3, only binary star solutions have been developed.

イロト イヨト イヨト

NSS solutions

Astrometric

The periodic oscillation of the photocenter was used to detect the binarity. known parameters: period, eccentricity, inclination, angular distance of the photocenter from the center of mass, ω , Ω

Spectroscopic

The shift of the spectral lines in the spectrum of an unresolved binary known parameters: period, eccentricity, K_1 , ω

Eclipse

Changes in the brightness of unresolved stars due to eclipses known parameters: period, inclination, $e \cdot sin(\omega)$

More than one solution is possible for an object. In all cases, the binary appears only as a point source in Gaia images.

D. R. Czavalinga (HUN-REN-SZTE)

11 September 2024

Catalogs

Number of eclipsing binaries (EBs) in different catalogs:

- AAVSO Photometric All Sky Survey
 All-Sky Automated Survey for Supernovae
 General Catalog of Variable Stars *Kepler* Eclipsing Binary Stars *TESS* Eclipsing Binary Stars
 The latematical Variable Stars
- The International Variable Star Index

Catalogs	Number of EBs
APASS	4 516
ASAS-SN	35 464
GCVS	6849
<i>Kepler</i> EBs	2876
TESS EBs	4 584
VSX	971 757
Total	1 026 046

<ロト < 回 > < 回 > < 回 > < 回 >

Identification of candidates

- E - 5

Results

We have identified 403 hierarchical triple candidates among formerly known EBs from the literature based on the periods of their Gaia NSS orbital solutions.

- 100 spectroscopic solutions
- 267 astrometric solutions
- 31 combined solutions
- 5 independent solutions from different methods

Results

11 September 2024

Distribution of inner binary periods and the corresponding outer orbital periods (Czavalinga+23)

D. R. Czavalinga (HUN-REN-SZTE)

outer orbital periods (Czavalinga+23)

Figure 3: Differential probability distribution of the outer orbit eccentricities (Czavalinga+23)

Analytical expression (Czavalinga+23)

$$rac{dN}{de}\simeq 8.34 \, e^{0.618} \exp[-5.15 e^{1.618}]$$

Figure 4: Cumulative eccentricity distribution of the outer orbit (Czavalinga+23)

outer orbital periods (Czavalinga+23)

Validation

- In order to confirm the Gaia NSS solutions, we first checked whether any of the 403 systems are known in the literature
 We found 27 systems
- Determination of eclipse minima times with the TESS space telescope and search for LTTE or dynamical effects

= √Q (~

イロト イヨト イヨト イヨト

Number	Category
403	Total number of candidates
27	Previously known triples
22	Sufficient TESS ETV points to directly confirm outer orbit
192	Significant non-linear behavior in TESS ETV points
4	Exhibit third body eclipses, i.e., they are triply eclipsing triples
4	Probable quadruple system with 2+2 configuration
245	Total confirmed triples
217	Total confirmed new triples
158	Insufficient supplementary data to independently confirm triple nature

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Validation of parameters

In the case of 22 triple systems, the good coverage of the TESS data series allowed us to investigate the outer orbital parameters using the O-C diagram.

Analytical LTTE $\Delta_{ m LTTE} = -rac{a_{ m AB}\sin i_2}{c}rac{(1-e_2^2)\sin(u_2+\omega_2)}{1+e_2\cos u_2}$

 $a_{\rm AB}$ is the semi-major axis of the orbit of the inner binary component around the center of mass of the system, i_2 is the inclination, e_2 is the eccentricity, ω_2 is the argument of periastron of the outer orbit ν_2 is the true anomaly of the outer orbit and c is the velocity of light.

Sac

イロト イヨト イヨト

11 September 2024

Period (Czavalinga+23)

11 September 2024

Eccentricity (Czavalinga+23)

D. R. Czavalinga (HUN-REN-SZTE)

Э Validation of parameters

Argument of periastron (Czavalinga+23)

1

Projected semi-major axis (Czavalinga+23)

1

Summary

- We found 403 compact hierarchical triple system candidates
- 376 are newly proposed objects
- From TESS measurements, 218 compact triple systems were confirmed, more than half of the compact triple systems known before this study
- We found four triply eclipsing triple stars unknown in literature
- We used an independent and fundamentally different method to test the orbital parameters of the Gaia NSS solutions

Thank you for your attention!

123 'clear ETV variation' CHT with astrometry

