

Borkovits Tamás Astronomical Observatory of Szeged University

Then and now:
A new look on the ETVs of hierarchical triple candidates in the primordial Kepler-field revisited by TESS

Collaborators: S. Rappaport (M.I.T. Kavli Institute), E. Forgács-Dajka, T. Mitnyan, I.B. Bíró, I. Csányi (Baja), A. Pál (Konkoly), T. Hajdu, J. Sztakovics (ELTE, Astron. Dept.) et al.

Eclipse Timing Variation Analyses of Kepler triples – after TESS

THEN

Monthly Notices of the royal astronomical society MNRAS **448,** 946–993 (2015)

doi:10.1093/mnras/stv015

Eclipse timing variation analyses of eccentric binaries with close tertiaries in the *Kepler* field

T. Borkovits,^{1,2★} S. Rappaport,³ T. Hajdu⁴ and J. Sztakovics⁴

¹Baja Astronomical Observatory, H-6500 Baja, Szegedi út, Kt. 766, Hungary

²ELTE Gothard-Lendület Research Group, H-9700 Szombathely, Szent Imre herceg út 112, Hungary

³M.I.T. Department of Physics and Kavli Institute for Astrophysics and Space Research, 70 Vassar St, Cambridge, MA 02139, USA

⁴Astronomical Department of Eötvös University, H-1118 Pázmány Péter stny. 1/A, Budapest, Hungary

Accepted 2014 December 30. Received 2014 December 29; in original form 2014 October 8

Monthly Notices of the royal astronomical society MNRAS **455**, 4136–4165 (2016)

A comprehensive study of the Kepler triples via eclipse timing

T. Borkovits,^{1,2}★ T. Hajdu,³ J. Sztakovics,³ S. Rappaport,⁴★ A. Levine,⁵ I. B. Bíró¹ and P. Klagyivik^{6,7}

¹Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766, Hungary

²ELTE Gothard-Lendület Research Group, H-9700 Szombathely, Szent Imre herceg út 112, Hungary

⁵Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁶Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain

⁷Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain

³Astronomical Department of Eötvös University, H-1118 Pázmány Péter stny. 1/A, Budapest, Hungary

⁴Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

THEN

26:221

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Since then ...

Kepler has gone

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Since then ...

TESS has arrived

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Since then ...

M.I.T. - 2018. 08. 06. 9:53

Since then ...

Sector 14 Camera 3

One more year ...

Since then ...

Sector 14 Camera 3

One more year ...

... and, summer (of 2019) is coming!

Since then ...

LTTE systems periods shorter than half of the prime Kepler mission

LTTE systems periods longer than half of the prime Kepler mission

LTTE systems periods close to the length of the prime Kepler mission

Extreme tight and compact systems – HARDCORE triples $P_1 = 6.47^{d} P_2 = 104^{c}$ KIC 09714358 KIC 09714358 $P_1 = 6.47^{d} P_2$ $= 104^{a}$ 0.09 0.06 0.06 0.04 ETV [in days] O-C [in days] 0.03 0.02 0.00 0.00 Secondary minima shifted by -0.013^d Secondary minima shifted by -0.001^d -0.03 55000 56000 57000 54900 55200 55500 55800 56100 56400 58000 59000 0.4 $P_1 = 27.83^d P_2 = 204^d$ KIC 07668648 $P_1 = 27.83^d P_2 = 203^d$ KIC 07668648 0.4 0.2 0.2 ETV [in days] O-C [in days] 0.0 0.0 -0.2 -0.2 -0.4-0.4 55000 56000 58000 59000 60000 57000 54900 55200 55500 55800 56100 56400

BJD - 2400000

Extreme tight and compact systems – HARDCORE triples $P_1 = 6.47^{d} P_2 = 104^{c}$ KIC 09714358 $P_1 = 6.47^d P_2 = 104^d$ KIC 09714358 0.09 0.06 0.06 0.04 ETV [in days] 0.03 0.02 0.00 0.00 Secondary minima shifted by -0.013d Secondary minima shifted by -0.001^d -0.03 55000 57000 54900 55200 55500 55800 56100 56400 56000 58000 59000 0.06 0.08 0.04 0.06 0.02 ETV [in days] 0.04 0.00 0.02 ETV [in days] -0.02 0.00 -0.04 -0.02 -0.04 -0.06 KIC 9714358 T₀=2454967.425501 P=6<u>.474227</u> -0.06 -0.08 0.01 0.00 -0.01 Residual -0.08 KIC 9714358 T₀=2454967.395501 P=6.<u>474227^d</u> -0.10 55000 56000 57000 58000 59000 6000 55000 60000 65000 70000 75000 80000

BJD - 2400000

O-C [in days]

BJD - 2400000

Further short-period triples with 3-rd body perturbations $P_1 = 3.42^d P_2 = 418^d$ KIC 06525196 $P_1 = 3.42^{d} P_2 = 419^{d}$ KIC 06525196 0.003 0.003 0.002 0.002 ETV [in days] 0.001 0.001 O-C [in days] 0.000 0.000 -0.001-0.001 -0.002 -0.002 -0.003 -0.003 55000 56000 57000 58000 59000 60000 54900 55200 55500 55800 56100 56400 0.014 0.014 $P_1 = 2.30^d P_2 = 515^d$ $P_1 = 2.30^d P_2 = 515^d$ KIC 04909707 KIC 04909707 0.007 0.007 ETV [in days] O-C [in days] 0.000 0.000 -0.007 -0.007 -0.014 -0.014 55000 56000 59000 60000 57000 58000 55200 55500 55800 56100 56400 54900

BJD - 2400000

Further shorter period triples with 3-rd body perturbations $P_1 = 17.79^d P_2 = 583^d$ KIC 07812175 0.0 0.2 $P_1 = 17.79^d P_2 = 586^d$ 0.04 0.00 ETV [in days] O-C [in days] -0.04 -0.1-0.2-0.08 -0.3 Secondary minima shifted by +1.326^d -0.12 Secondary minima shifted by +1.452^d 55000 56000 57000 58000 59000 60000 55700 55800 55900 56000 56100 56200 56300 56400 5650(- ') - 2400000 BJE $P_1 = 29.13^d P_2 = 542^d$ KIC 10223616

54900

55200

55500

55800

BJD - 2400000

56100

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Further shorter period triples with 3-rd body perturbations $P_1 = 17.79^d P_2 = 583^d$ KIC 07812175 0.0 0.2 $P_1 = 17.79^d P_2 = 586^d$ 0.04 0.00 ETV [in days] O-C [in days] -0.04 -0.1-0.2 -0.08 -0.3 Secondary minima shifted by +1.326^d -0.12 Secondary minima shifted by +1.452^d 55000 56000 57000 58000 59000 60000 55700 55800 55900 56000 56100 56300 56400 5650(56200 $P_1 = 32.47^d P_2 = 862^d$ KIC 05255552 KIC 05255552 $P_1 = 32.47^d P_2 = 862^d$ 1.8 0.6 ETV [in days] 0.4 0.9 O-C [in days] 0.2 0.0 0.0 -0.9 Secondary minima shifted by -0.715^d -0.2 Secondary minima shifted by -1.522^c 55000 56000 60000 57000 58000 59000

5640(

Longer period triples with 3-rd body perturbations

Longer period triples with 3-rd body perturbations (category: JOKE)

BJD - 2400000

BJD - 2400000

BJD - 2400000

BJD - 2400000

BJD - 2400000

Eclipse Timing Variation Analyses of Kepler triples – after TESS

An ordinary (non funny) ETV – related to Ondřej's talk

Yes, this is the formerly expected red nova!

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• Light-Travel Time Effect (LITE, LTTE - Rømer-delay)

$$\Delta_{\rm LTTE} = -\frac{a_{\rm AB} \sin i_2}{c} \frac{(1 - e_2^2) \sin(v_2 + \omega_2)}{1 + e_2 \cos v_2}$$

 a_{AB} – semi-major axis of the EB's orbit around the CM of the triple e2, *i*2, ω_2 , *v*2 – eccentricity, inclination, argument of periastron and true anomaly of the relative orbit of the third body *c* – speed of light

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• Light-Travel Time Effect (LITE, LTTE - Rømer-delay)

Changing to eccentric anomaly (\mathcal{P}_2):

$$\begin{aligned} \Delta_{\text{LTTE}} &= -\frac{a_{\text{AB}} \sin i_2}{c} \left[\sqrt{1 - e_2^2} \sin \mathcal{E}_2 \cos \omega_2 + (\cos \mathcal{E}_2 - e_2) \sin \omega_2 \right] \\ &= -\frac{a_{\text{AB}} \sin i_2}{c} \left[\sqrt{1 - e_2^2} \cos^2 \omega_2 \sin(\mathcal{E}_2 + \phi) - e_2 \sin \omega_2 \right], \end{aligned}$$

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• Light-Travel Time Effect (LITE, LTTE - Rømer-delay)

Introducing the mass function:

$$f(m_{\rm C}) = \frac{m_{\rm C}^3 \sin^3 i_2}{m_{\rm ABC}^2} = \frac{4\pi^2 a_{\rm AB}^3 \sin^3 i_2}{GP_2^2}$$

and thus, the amplitude of LTTE can be written as

$$\begin{aligned} \mathcal{A}_{\text{LTTE}} &= \frac{G^{1/3}}{c} \left(\frac{P_2}{2\pi}\right)^{2/3} f(m_{\text{C}})^{1/3} \sqrt{1 - e_2^2 \cos^2 \omega_2} \\ &\approx 1.1 \times 10^{-4} \frac{m_{\text{C}} \sin i_2}{m_{\text{ABC}}^{2/3}} P_2^{2/3} \sqrt{1 - e_2^2 \cos^2 \omega_2}, \end{aligned}$$

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• Dynamical perturbations of a third body

Three different time-scales

Classifications of periodic perturbations	Period	Relative amplitude
Short period perturbations	$\sim P_1$	$\sim (P_1/P_2)^2$
Medium period perturbations	~ P ₂	$\sim P_1/P_2$
Long period perturbations	$\sim P_2^2/P_1$	1

Note: This is the classification introduced by Brown, 1936 for his Lunar-theory. Classification and nomenclature based on the planetary theory departs!

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• Medium-period perturbations of a third body

Quadrupole-terms (Borkovits, Csizmadia, Forgács-Dajka, Hegedüs, 2011)

$$\begin{split} (O-C)_{v_2} &= \frac{P_1}{2\pi} A_L \left\{ \left(1-e_1^2\right)^{1/2} \left\{ \left[\frac{4}{5} f_1(e_1) + \frac{6}{5} K_1(e_1,\omega_1)\right] \left[\left(I^2 - \frac{1}{3}\right) \mathcal{M} + \frac{1}{2} \left(1-I^2\right) \mathcal{S}(2v_2 + 2g_2) \right] \right. \\ &+ \left[\frac{51}{20} e_1^2 f_2(e_1) \cos 2g_1 + 2K_2(e_1,\omega_1,g_1) + \frac{1}{8} e_1^2 K_4(e_1,\omega_1,g_1) \right] \left[\left(1-I^2\right) \mathcal{M} + \frac{1}{2} \left(1+I^2\right) \mathcal{S}(2v_2 + 2g_2) \right] \right. \\ &- \frac{1}{2} \left[\frac{51}{20} e_1^2 f_2(e_1) \sin 2g_1 + 2K_3(e_1,\omega_1,g_1) + \frac{1}{8} e_1^2 K_5(e_1,\omega_1,g_1) \right] 2IC(2v_2 + 2g_2) \right\} \\ &+ \frac{\sin i_m \cot i_1}{\left(1-e_1^2\right)^{1/2}} \left\{ \left[-\frac{2}{5} \left(1+\frac{3}{2} e_1^2\right) \cos u_{m1} + e_1^2 \cos(2g_1 + u_{m1}) \right] \left[1+2K_1(e_1,\omega_1) \right] I \left[\mathcal{M} - \frac{1}{2} \mathcal{S}(2v_2 + 2g_2) \right] \right. \\ &+ \frac{1}{2} \left[\frac{2}{5} \left(1+\frac{3}{2} e_1^2\right) \sin u_{m1} + e_1^2 \sin(2g_1 + u_{m1}) \right] \left[1+2K_1(e_1,\omega_1) \right] C(2v_2 + 2g_2) \right\}, \end{split}$$

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• Medium-period perturbations of a third body – special cases Circular inner orbit (Borkovits, Érdi, Forgács-Dajka, Kovács T., 2003)

$$\Delta_{\rm L10} = \frac{P_1}{2\pi} \frac{m_{\rm C}}{m_{\rm ABC}} \frac{P_1}{P_2} \left[\left(1 - \frac{3}{2} \sin^2 i_{\rm m} \right) \mathcal{M} + \frac{3}{4} \sin^2 i_{\rm m} \mathcal{S} \right] + \dots$$

Both orbits circular

$$\Delta_{\rm L10}^{e_2=0} = \frac{P_1}{2\pi} \frac{m_{\rm C}}{m_{\rm ABC}} \frac{P_1}{P_2} \frac{3}{4} \sin^2 i_{\rm m} \sin(2u_2 - 2n_2)$$

Circular inner orbit – coplanar orbits (Agol et al., 2005)

$$\Delta_{\rm L10}^{\rm copl} = \frac{P_1}{2\pi} \frac{m_{\rm C}}{m_{\rm ABC}} \frac{P_1}{P_2} \left(3e_2 \sin v_2 - \frac{3}{4}e_2^2 \sin 2v_2 + \frac{1}{3}e_2^3 \sin 3v_2 \right) + O(e_2^4)$$

Two circular & coplanar orbits (Trinity)

 $\Delta_{\rm L10}=0.$

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

- Medium-period perturbations of a third body
- Comparison of the amplitudes with the LTTE--terms:

$$\frac{\mathcal{A}_{\rm dyn}}{\mathcal{A}_{\rm LTTE}} = \frac{c}{\left(2\pi G m_{\rm ABC}\right)^{1/3} \sin i_2} \mathcal{E}(e_2,\omega_2) \left(\frac{P_1}{P_2}\right)^2 P_2^{1/3},\tag{13}$$

where

$$\mathcal{E}(e_2,\omega_2) = \left(1 - e_2^2\right)^{-3/2} \left(1 - e_2^2 \cos^2 \omega_2\right)^{-1/2}$$
(14)

and therefore, for a given total mass

$$\frac{\mathcal{A}_{\rm dyn}}{\mathcal{A}_{\rm LTTE}} \geq \frac{c}{\left(2\pi G m_{\rm ABC}\right)^{1/3}} \left(\frac{P_1}{P_2}\right)^2 P_2^{1/3}$$
$$\geq 1.45 \times 10^3 m_{\rm ABC}^{-1/3} \frac{P_1^2}{P_2^{5/3}}.$$

Inner Period (P1) [in days]

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

- Medium-period perturbations of a third body
- Comparison of the amplitudes with the LTTE--terms:

$$\frac{\mathcal{A}_{\rm dyn}}{\mathcal{A}_{\rm LTTE}} = \frac{c}{\left(2\pi G m_{\rm ABC}\right)^{1/3} \sin i_2} \mathcal{E}(e_2, \omega_2) \left(\frac{P_1}{P_2}\right)^2 P_2^{1/3},\tag{13}$$

where

$$\mathcal{E}(e_2,\omega_2) = \left(1 - e_2^2\right)^{-3/2} \left(1 - e_2^2 \cos^2 \omega_2\right)^{-1/2}$$
(14)

For Kepler(the life-time of the original mission ~ 1470 days):

$$\frac{\mathcal{A}_{\rm dyn}}{\mathcal{A}_{\rm LTTE}} \ge m_{\rm ABC}^{-1/3} \left(\frac{P_1}{11.46}\right)^2 \left(\frac{1470}{P_2}\right)^{5/3}$$

Inner Period (P1) [in days]

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

Inner Period (P₁) [in days]

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• "Apse-node" timescale perturbations

For the closest Kepler triples apsidal motion and nodal regression timescale is shorter than a decade! These must be taken into account!

General form of apsidal motion (irrespective on its origin):

$$\Delta_{\text{apse}} = \frac{P_1}{2\pi} \left[\arctan\left(\frac{\pm e_1 \cos \omega_1}{1 + \sqrt{1 - e_1^2} \mp e_1 \sin \omega_1}\right) \pm \sqrt{1 - e_1^2} \frac{e_1 \cos \omega_1}{1 \mp e_1 \sin \omega_1} \right]$$

In case of third-body perturbations the variation of ω_1 no longer linear in time and furthermore, e1 and P1 also vary!

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

• "Apse-node" timescale perturbations

The period of the dynamical apsidal advance (and nodal regression)

$$P_{\text{apse}} \sim \frac{8}{15} \frac{m_{\text{ABC}}}{m_{\text{C}}} \frac{P_2^2}{P_1} f(e_1, e_2, i_{\text{m}}, g_1, g_2)$$

It can be calculated from the long-term+LTTE third body solution, therefore, it is constrained – helps to resolve some degeneracies

(see Borkovits et al. 2015 for details, especially Appendix C)

Eclipse Timing Variation Analyses of Kepler triples – after TESS

The Royal Road: Eclipse Timing Variation Analysis

The effects of the third body:

Why are these good for us?

- LTTE + dynamical perturbations:
 - light-time effect: P₂, $a_{AB}sini_2$ [in km], e_2 , ω_2 , f(m_c)
 - grav. perturbations:

- (P₂ time-scale): P₂, m_c/M, e₂, $(\Omega_1 - \Omega_2)$, i_{mut} , i_0 , g₂ e₁, ω_1 , g₁, h, j₁, j₂ - (P₂²/P₁ time-scale): e₁, ω_1 , e₂, i_{mut} , g₁, g₂, h, m_c/M

(apsidal motion, orbital plane precession)

The yellow quantities were almost completely unknown for compact triples before *Kepler*-era, although they are very important for dynamical evolution studies

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Search for hierarchical triples in the *Kepler* sample

Steps of the analysis

- 3. Search for third-body solution
- Levenberg-Marquardt non-linear LSQ search.

The general form

$$\Delta = \sum_{i=0}^{3} c_i E^i + \left[\Delta_{\rm LTTE} + \Delta_{\rm dyn} + \Delta_{\rm apse}\right]_0^E.$$

where the expected O C itself is

$$\Delta = T(E) - T_0 - P_{\rm s}E$$

Always included: linear polynom + LTTE terms (2+5 parameters)

Dynamical term(s) added where the shape and/or the estimated Adyn/ALTTE ratio makes it necessary (9 or less extra parameters – some of them may be constrained!) Apsidal motion terms for eccentric inner orbits (3 parameters included in the above) Quadratic (or, very rarely, cubic plynom) in a very limited cases (+1 or 2 parameters)

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Search for hierarchical triples in the *Kepler* sample

Results from 2024 (2016)

Summary

• A total of 189 (222) third-body ETV solution was found

	LTTE only	LTTE+dyn	Sum
Group I	54 (38)	37 (31)	91 (69)
Group II	31 (64)	4 (14)	35 (78)
Group III	50 (58)	13 (17)	63 (75)
Sum total	135 (160)	54 (62)	189 (222)
False positive	0 (8)	0 (0)	187 (230)

- Group I: More than two outer orbital periods are covered (or extra eclipses verifythe third body)
- Group II: More than one, but less than two outer periods
- Group III: Less than one outer orbital period
- Ealse Positive: The signal from LTTE but the source is not an ER

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Results on hierarchical triples in the *Kepler* **sample**

Group I systems (2024 – not final)

- 96d<P2<2714d pure LTTE systems
- 45d<P2<1581d LTTE+dyn systems
- 12 systems with extra eclipses one of them identified in TESS data (extra eclipses in TESS data: 6 EBs)
- These are the most certain ones although there might be a few false positive amongst them.

KIC 06543674

KIC 06545018

KIC 06144827

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Results on hierarchical triples in the *Kepler* **sample**

Group II systems

- 618d<P2<4770d pure LTTE systems
- 1385d<P2<3418d LTTE+dyn systems
- LTTE+dyn systems seems to be certain enough, but for pure LTTE cases there is a greater probability of false 3rd body interpretation

KIC 05478466

KIC 05621294

KIC 05653126

Eclipse Timing Variation Analyses of Kepler triples – after TESS

KIC 10268809

Results on hierarchical triples in the *Kepler* **sample**

Group III systems

KIC 08553788

- 765d<P2<16003d pure LTTE systems
- 1487<P2<9402d LTTE+dyn systems
- Most uncertain cases, but many of them most probably real triple

KIC 09083523

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Results on hierarchical triples in the Kepler sample

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Results on hierarchical triples in the *Kepler* **sample**

Statistics

• Lower end of outer period distribution:

The tightest binaries have no close ternary companions. (See the empty yellow ergion!) This might indicate some differences of the evolution (formation) of contact binaries.

Inner Period (P1) [in days]

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Results on hierarchical triples in the *Kepler* **sample**

Statistics

• Eccentricity distribution:

It is similar to that which was shown in

Duchene & Kraus 2013 for different samples

of wider field-binaries

Figure 3:

Cumulative distribution of eccentricities for systems with $2 \leq \log P \leq 4$ for field multiple systems among solar-type stars (green curve; Raghavan et al. 2010), low-mass stars (orange curve; from the SB9 catalog, Pourbaix et al. 2004), VLM stars and BDs (red curve; Dupuy & Liu 2011), high-mass stars (blue curve; from the SB9 catalog and Abt 2003, Sana et al. 2012a). The dot-dashed curves indicate incomplete samples, for which the eccentricity distribution is potentially biased. The dashed and dotted curves represent the expected distribution for a flat and thermal distribution, f(e) = 2e, respectively.

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Results on hierarchical triples in the *Kepler* **sample**

Statistics

• Mutual inclination:

(It can be calculated only for dynamial systems)

• The peak at $i_m \sim 40^\circ$ may be a good evidence for KCTF mechanism

Eclipse Timing Variation Analyses of Kepler triples – after TESS

Thank you for the attention!

