Petr Zasche Doubly Eclipsing Systems: Divide Et Impera

Astronomical institute Charles University Faculty of mathematics & physics Prague, Czech Republic

11 Sep 2024 Litomyšl

The phrase "Divide et impera"

- Origin not clear
- Usually attributed to Julius Caesar
- Used before by Philip II of Macedon :
 - (lived 382-336BC, ruled 359-336BC)

The phrase "Divide et impera" Into

- Usually attributed to during Caesar Used hefore where the second secon
 - - (lir ed 382-336BC, rule 1 759-336LC)

Philip II Macedon

Silver tetradrachm

What are the doubly eclipsing systems?

- More eclipsing periods
 - o It can be either (2+2) quadruple, or 2+1, or (2+1)+1, (2+2)+1, etc.
- One point source on the sky
- Range of periods, depths of eclipses, magnitudes, ...
- Selection effects huge!
- Gravitationally bound system (?)
- Photometric surveys + Kepler + TESS +.. > 99 %

An approach for DEBs analysis

- We have in principle two different options:
 - Separately solve the individual LCs, RVs, ETV, ...
 - And then merging the solution together to get the self-consistent picture
 - I call this "Divide et impera" approach
 - Combined photodynamical analysis of all available means
 - Very complicated, time consuming, needed a lot of CPU time,....
 - Done by group around T.Borkovits and his fellows

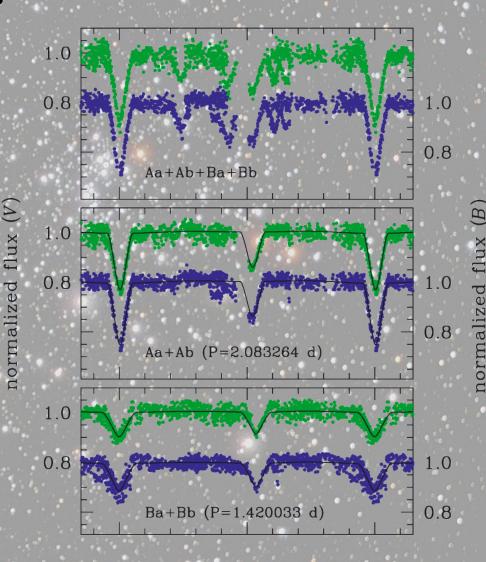
Why doubly eclipsing systems?

- Derive for both binaries: M, R, log g, T_{eff} , ...
- Share the same: age, chemical compositions, distance, ...
- Study the 2+2 dynamics, perturbations, secular evolution, stability, ETV studies, model the future fate of the system, ...
- Statistical studies, modelling of stellar populations, ...

All these set rather strict constraints for the complete solution!

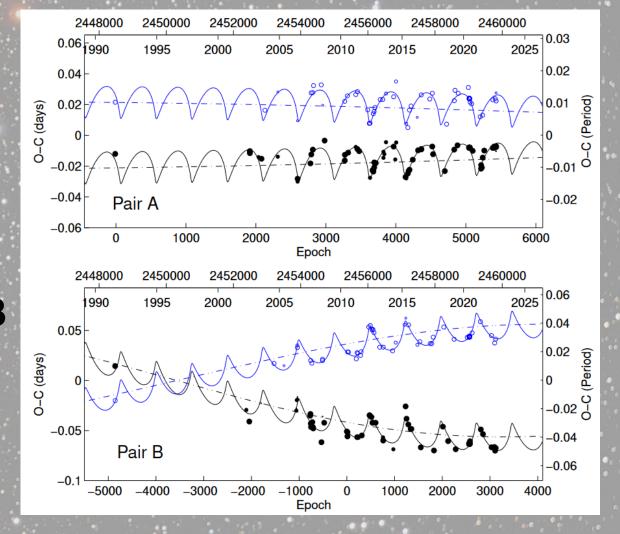
A little statistics

Our goal is to detect both periods & prove grav.coupling


• Discovery statistics:

- Year 2008: the first one (V994 Her)
- Year 2018: in total 94 known
- Year 2019: in total 146 known
- Year 2020: in total 149 known
- Year 2021: in total 159 known
- Year 2022: in total 352 known
- Year 2023: in total 771 known
- Year 2024: in total 980 known

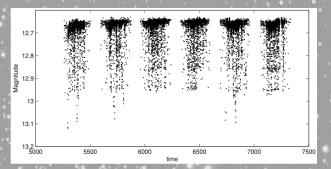
 But among these <u>only 58</u> have confirmed mutual orbits (i.e. are definitely bound 2+2 quadruples)


Where the story begun ...

- V994 Her: Lee et al. (2008)
- Two eclipsing systems, detached
- Bright star (V = 7mag)
- Distance about 240pc
- Pair A: P=2.08d, sp B8+A0, e=0.03
- Pair B: P=1.42d, sp A2+A4, e=0.08

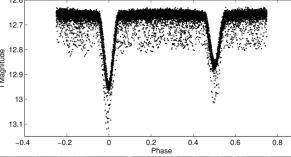
V994 Her: really bound system

- Zasche & Uhlar (2016)
- Two pairs A+B really orbit
- Mutual period 2.9yr
- Apsidal motion of both A&B

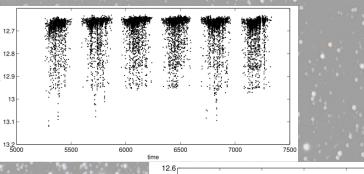

Selection effects

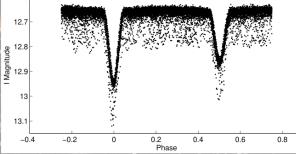
To detect the doubly eclipsing system :

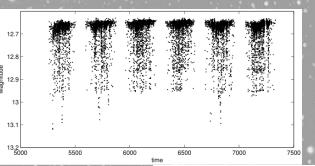
Both inner periods A&B adequately short (too long - problem)
 Not too short (contact systems - problem)
 Selection effects due to data cadency of photometric surveys

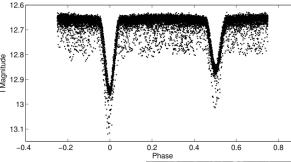

- Mutual A-B outer period should be:
 - \circ Short enough to be detected
 - \circ Too short period large dynamical effects
 - Long A-B period large semimajor axis interferometric detection

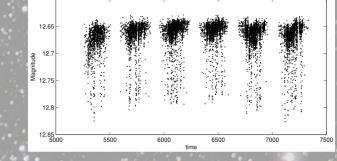
Complete combined photometry

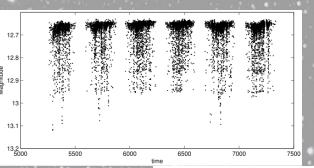


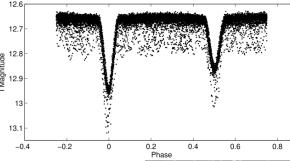

- Complete combined photometry
- Detect the more pronounced period A

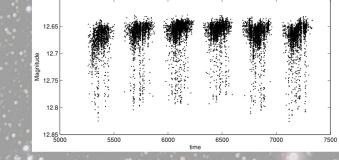


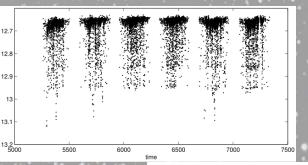

- Complete combined photometry
- Detect the more pronounced period A
- Preliminary fit of pair A light curve

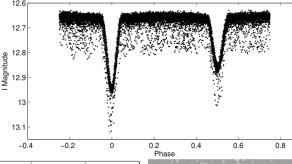


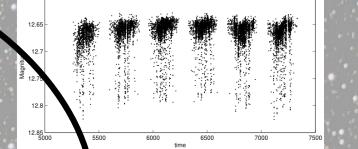

- Complete combined photometry
- Detect the more pronounced period A
- Preliminary fit of pair A light curve
- Subtract of pair A → residua
- Detect B and derive its period

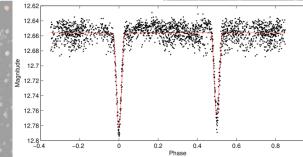




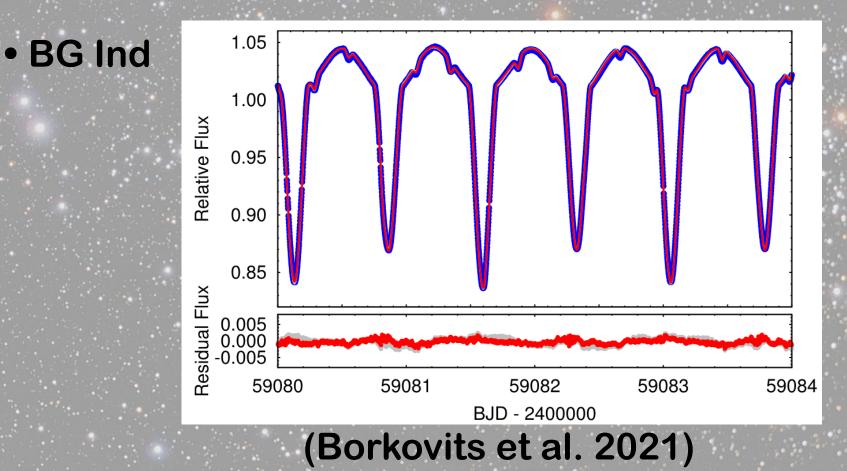

- Complete combined photometry
- Detect the more pronounced period A
- Preliminary fit of pair A light curve
- Subtract of pair A → residua
- Detect B and derive its period
- Preliminary fit of pair B



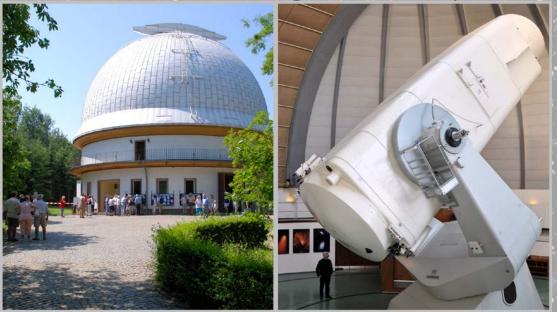




- Complete combined photometry
- Detect the more pronounced period A
- Preliminary fit of pair A light curve
- Subtract of pair A → residua
- Detect B and derive its period
- Preliminary fit of pair B
- Subtract pair B from combined photométry



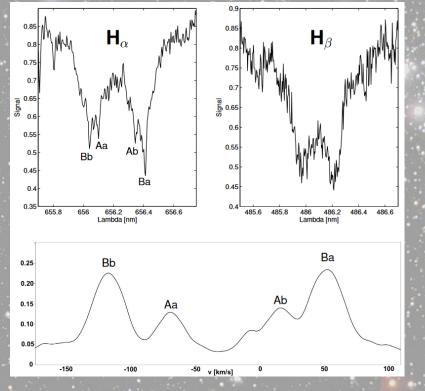
Problematic detection

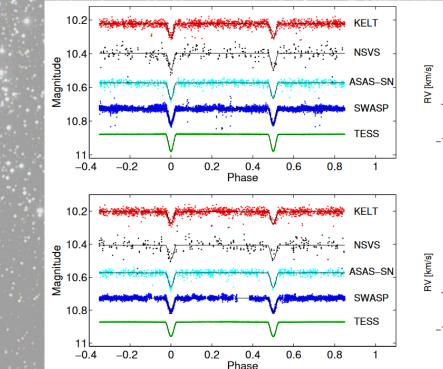

- From our sample: about <u>each 500th EB</u> is multiply eclipsing!! Several examples here:
- V994 Her: known from 1999, but detected as DEB in 2008
- V482 Per: known from 1966, but detected as DEB in 2017
- AV CMi: known from 1968, but detected as DEB in 2010
- V839 Cep: known from 2006, but detected as DEB in 2021
- V2894 Cyg: known from 2004, but detected as DEB in 2021
- BG Ind: known from 1984, but detected as DEB in 2021
- BU CMi: known from 1999, but detected as DEB in 2021

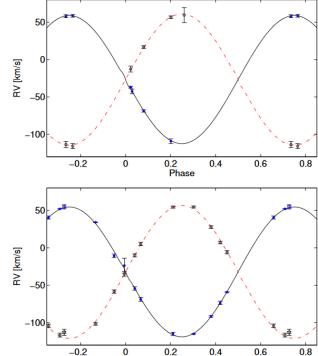
Problematic detection

- Czech discovery! (Z. Henzl)
- Bright star (10.7mag), northern-hemisphere (DEC +57)
- Many photometric data (NSVS, ASAS-SN, SWASP, KELT)
- Two well-defined periods
- Both detached EA-type
- New data: D65, Henzl, FRAM, TESS
- Detailed study in: Astronomy & Astrophysics 642, A63 (2020)

2m Tautenburg telescope

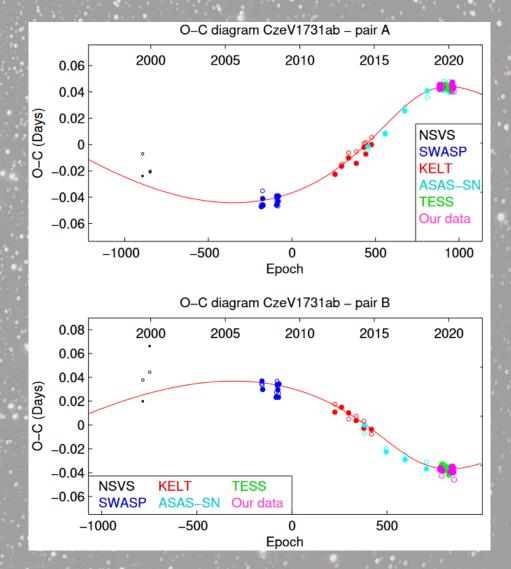



65cm Ondrejov telescope



+

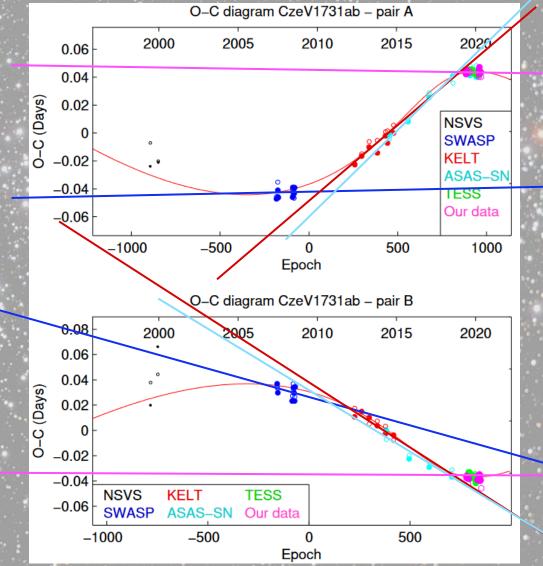
Spectroscopic data from 2m



Phase

photometric data --> LC+RV study

- Both pairs ETV period analysis
- Collecting available data
- Ground-based + satellite data
- Range > 20 yr
- Results:
 - P_A = 4.10842 d , e=0.0
 - P_B = 4.67552 d , e=0.0
 - Mutual orbit: p_{AB} = 34 yr, e_{AB} = 0.38
 - $M_B/M_A = 1.2$
 - Predicted: semiaxis ≈ 59 mas



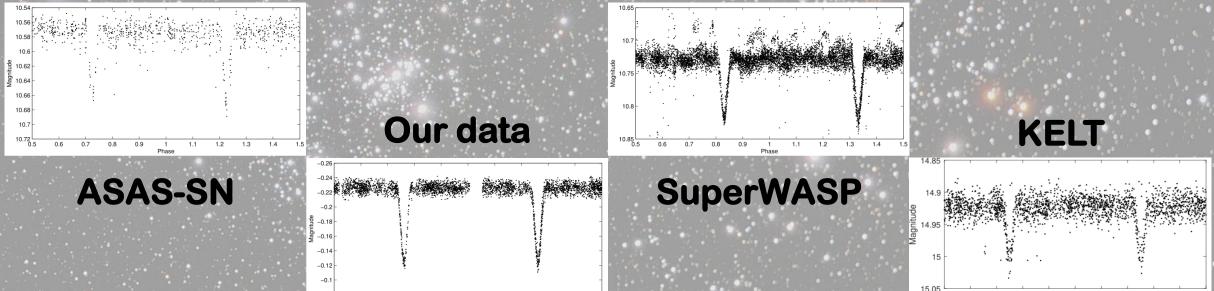
- Cutting the entire data set into smaller parts
- Assuming linear behavior on smaller time scales
- Period constant during shorter time interval
- All LC, RV, and ETV can be handled in this way

→ Can such an approach be used for all of the systems?

- Cutting the entire data set into smaller parts
- Assuming linear behavior on smaller time scales
- Period constant during shorter time interval
- All LC, RV, and ETV can be handled in this way

➡ Can such an approach be used for all of the systems?
DEFINITELY NOT! BUT SURPRISINGLY.....

Breaking the whole dataset to smaller parts is possible


only when:

• The outer period is long enough

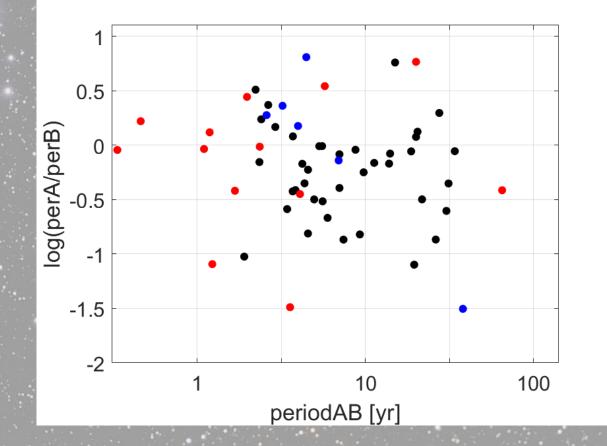
 \circ The data set span is \ll than the outer period

 \circ The number of data points in the smaller subset is sufficient

Some examples of LCs for czev1731 star from various datasets

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1

Our results

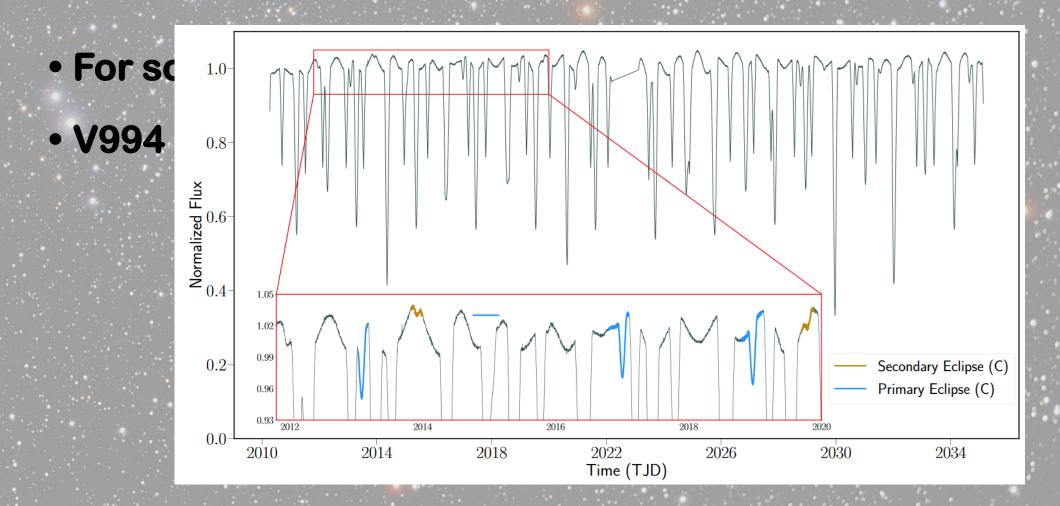

- Using our approach we have studied and discovered in total 38 proved 2+2 doubly eclipsing quadruples (from total number of 58 of proved ones yet!)
- The statistics: From total number of 58 systems:

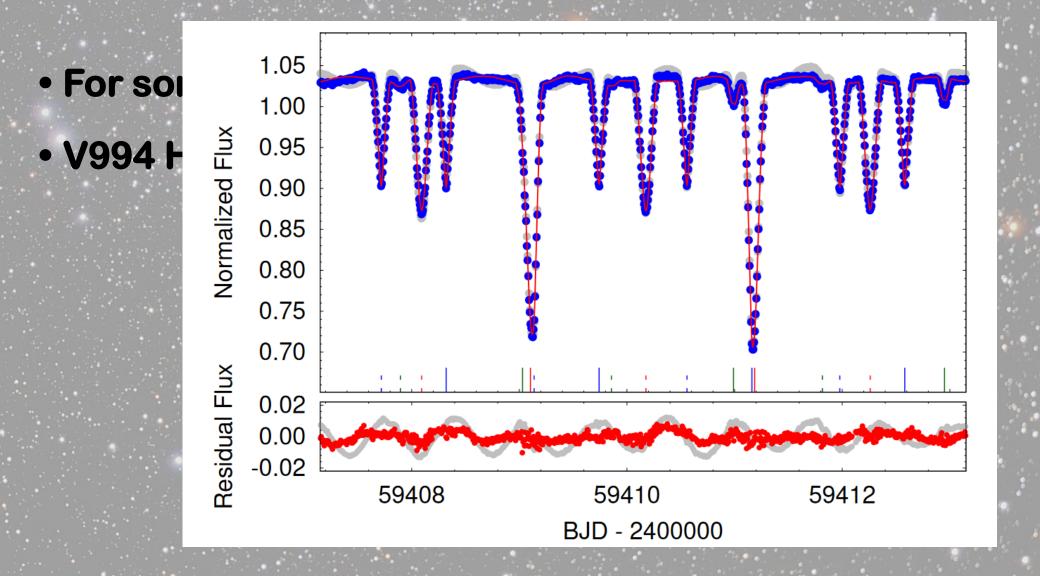
 \circ Only 4 have $P_{AB}/P_A < 100$ \circ Only 6 have $P_{AB}/P_B < 100$

Therefore, for the huge majority of systems our approach "divide et impera" is substantiated.

Our results - comparison

• Periods: inner versus mutual


Black dots: our systems Red dots: Borkovits et al. Blue dots: others


Our approach and its assumptions

- For whole our analysis we assume:
 - \circ Constant luminosity fraction of both A&B pairs: L_A/L_B = const.
 - Constant value of the third light value (i.e. non-variable third light)
 - Inclination of both the orbits also constant

• On the other hand, what can even change and is computed: • Periods of both A&B, apsidal motion of both pairs, etc.

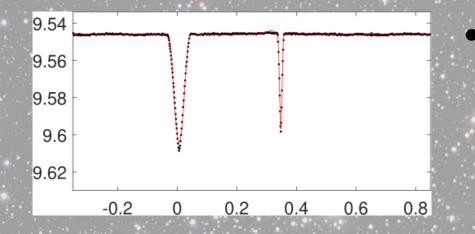
- For some systems these assumptions do not work...
- V994 Her more complicated system!

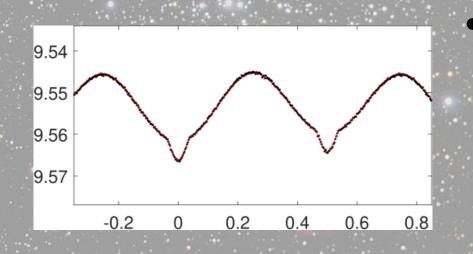
• Fo

• V9

Parameter	Bina	Binary A		Binary B		Binary C	
$P_{\rm a}$ [days]	$\begin{array}{c} 2.0832039 \substack{+0.0000042\\ -0.0000039\\ 11.90 \substack{+0.18\\ -0.21\\ 84.26 \substack{+0.40\\ -0.36\\ 0.0271 \substack{+0.0012\\ -0.0013\\ -0.0013\\ \end{array}}$		$\begin{array}{c} 1.4200981 \substack{+0.0000033\\ -0.00000040}\\ 8.27 \substack{+0.08\\ -0.07\\ 89.37 \substack{+0.37\\ -0.35\\ 0.1187 \substack{+0.0007\\ -0.0007\\ -0.0007\\ 177 \ 0.222 \end{array}$		$1.9601064^{+0.0000018}_{-0.0000018}$		1062.3
a [<i>R</i> ⊙]	$11.90\substack{+0.18\\-0.21}$		$8.27\substack{+0.08\\-0.07}$		$9.00^{+0.08}_{-0.07}$		911_ 85.0_ 0.694_0
i ^a [deg]	$84.26\substack{+0.40\\-0.36}$		$89.37\substack{+0.37\\-0.35}$		$85.90^{+1.17}_{-1.02}$		85.0_
e	$0.0271^{+0.0012}_{-0.0013}$		$0.1187\substack{+0.0007\\-0.0007}$		$\begin{array}{r} 85.90\substack{+1.17\\-1.02}\\ 0.1701\substack{+0.0064\\-0.0087}\end{array}$		0.694^{+0}_{-0}
ω [deg]	$206.2^{+4.5}_{-6.1}$		$173.6^{+2.2}_{-2.8}$		$314.0^{+3.4}_{-2.3}$ $2.04^{+0.30}_{-0.35}$		59.1^{+}_{-}
$\dot{\omega} \left[\text{deg/yr} \right]$	$1.85^{+0.70}_{-0.63}$		$3.60^{+0.14}_{-0.18}$		$2.04^{+0.30}_{-0.35}$		_
τ [BJD - 2400000]	$59010.842^{+0.025}_{-0.035}$		$59010.389^{+0.009}_{-0.011}$		$59009.338^{+0.018}_{-0.012}$		58 167.6
$t_{\rm prim\ eclipse}$ [BJD - 2400000]	$59011.1822\substack{+0.0008\\-0.0010}\\0.760\substack{+0.008\\-0.008}$		$59010.389^{+0.009}_{-0.011}$ $59010.7330^{+0.0017}_{-0.0018}$		$59011.1252\substack{+0.0003\\-0.0003}\\0.534\substack{+0.031\\-0.038}$		_
$q (= m_2/m_1)$	$0.760^{+0.008}_{-0.008}$		$1.007^{+0.008}_{-0.007}$		$0.534^{+0.031}_{-0.038}$		0.724^{+0}_{-0}
$K_{\rm pri} [\rm km s^{-1}]$	124^{+2}_{-3}		149^{+2}_{-1}		82 ⁺³		25_
$K_{ m sec} [m km s^{-1}]$	163^{+2}_{-2}		148^{+1}_{-1}		154^{+4}_{-4}		35_
$\gamma [{ m km/s}]$	-	_	-	_	-	_	-39.0
individual stars	Aa	Ab	Ba	Bb	Ca	СЬ	
Relative Quantities:							
fractional radius ^b $[R/a]$	$\begin{array}{c} 0.1773\substack{+0.0027\\-0.0022}\\ 0.4198\substack{+0.0086\\-0.0095}\end{array}$	$\begin{array}{c} 0.1461\substack{+0.0017\\-0.0021}\\ 0.2077\substack{+0.0113\\-0.0121}\\\end{array}$	$0.1907^{+0.0021}_{-0.0027}$	$\begin{array}{c} 0.1915\substack{+0.0020\\-0.0028}\\ 0.1315\substack{+0.0024\\-0.0021}\\ 0.0021\end{array}$	$0.1673^{+0.0019}_{-0.0021}$	$0.0874^{+0.0084}_{-0.0044}$	
fractional luminosity in TESS-band	$0.4198^{+0.0086}_{-0.0095}$	$0.2077^{+0.0113}_{-0.0121}$	$0.1290^{+0.0023}_{-0.0019}$	$0.1315^{+0.0024}_{-0.0021}$	$0.0930^{+0.0112}_{-0.0126}$	$0.0067^{+0.0012}_{-0.0012}$	
fractional luminosity in V-band	$0.4406\substack{+0.0124\\-0.0176}$	$0.2084_{-0.0153}^{+0.0120}$	$\begin{array}{c} 0.1907\substack{+0.0021\\-0.0027}\\ 0.1290\substack{+0.0023\\-0.0019}\\ 0.1200\substack{+0.0033\\-0.0031}\end{array}$	$0.1232_{-0.0034}^{+0.0035}$	$\begin{array}{c} 0.1673\substack{+0.0019\\-0.0021}\\ 0.0930\substack{+0.0112\\-0.0126}\\ 0.0763\substack{+0.0130\\-0.0148}\end{array}$	$\begin{array}{c} 0.0874\substack{+0.0084\\-0.0044}\\ 0.0067\substack{+0.0012\\-0.0012}\\ 0.0032\substack{+0.0008\\-0.0007}\end{array}$	
Physical Quantities:							
T_{eff}^{c} [K]	11879^{+362}_{-325}	$\begin{array}{r} 9915\substack{+289\\-264}\\2.251\substack{+0.107\\-0.125}\\1.741\substack{+0.039\\-0.057}\end{array}$	8643^{+241}_{-179}	$\begin{array}{r} 8695\substack{+242\\-190}\\ 1.889\substack{+0.055\\-0.049}\\ 1.586\substack{+0.024\\-0.034}\end{array}$	7785^{+351}_{-285}	5181^{+156}_{-220}	
mass $[M_{\odot}]$	$2.957^{+0.133}_{-0.146}$	$2.251^{+0.107}_{-0.125}$	$1.876^{+0.050}_{-0.048}$	$1.889^{+0.055}_{-0.049}$	$1.662^{+0.052}_{-0.055}$	$0.888^{+0.039}_{-0.046}$	
$radius^{c} [R_{\odot}]$	$2.110^{+0.024}_{-0.023}$	$1.741^{+0.039}_{-0.057}$	$1.580^{+0.024}_{-0.032}$	$1.586^{+0.024}_{-0.034}$	$1.507^{+0.020}_{-0.023}$	$0.789^{+0.073}_{-0.044}$	
luminosity ^c $[L_{\odot}]$	$79.5^{+11.4}_{-9.4}$	$26.3^{+4.4}_{-4.1}$	$12.5^{+1.4}_{-1.1}$	$12.9^{+1.5}_{-1.2}$	$7.5^{+1.4}_{-1.1}$	$0.40^{+0.08}_{-0.07}$	
[<i>M</i> _{bol}]	$0.02^{+0.14}_{-0.15}$	$1.22^{+0.18}_{-0.17}$	$2.03^{+0.10}_{-0.12}$	$2.00^{+0.10}_{-0.12}$	$7785^{+351}_{-285}\\1.662^{+0.052}_{-0.055}\\1.507^{+0.020}_{-0.023}\\7.5^{+1.4}_{-1.1}\\2.59^{+0.17}_{-0.18}$	$5181^{+156}_{-220}\\0.888^{+0.039}_{-0.046}\\0.789^{+0.073}_{-0.044}\\0.40^{+0.08}_{-0.07}\\5.76^{+0.22}_{-0.20}\\5.76^{+0.22}_{-0.20}$	
$\log g^c$ [cgs]	$\begin{array}{r} 11879^{+362}_{-325}\\ 2.957^{+0.133}_{-0.146}\\ 2.110^{+0.024}_{-0.023}\\ 79.5^{+11.4}_{-9.4}\\ 0.02^{+0.14}_{-0.15}\\ 4.260^{+0.014}_{-0.019}\end{array}$	$\begin{array}{r} -0.03 \\ -0.07 \\ 26.3 \\ -4.1 \\ 1.22 \\ -0.17 \\ 4.309 \\ -0.006 \\ \end{array}$	$\begin{array}{r} 8643^{+241}_{-179}\\ 1.876^{+0.050}_{-0.048}\\ 1.580^{+0.024}_{-0.032}\\ 12.5^{+1.4}_{-1.1}\\ 2.03^{+0.10}_{-0.12}\\ 4.314^{+0.011}_{-0.009}\end{array}$	$\begin{array}{r} -0.03 \\ -0.05 \\ 12.9 \\ -1.2 \\ 2.00 \\ -0.12 \\ 4.314 \\ -0.009 \end{array}$	4.302	$4.597_{-0.075}^{+0.026}$	
log(age) [dex]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$(M_V)_{ m tot}^c$	$-0.24^{+0.07}_{-0.08}$						
distance [pc]	271_{-6}^{+7}						

- For some systems these assumptions do not work...
- The star named CzeV4315:
 - Discovered by Z.Henzl
 - Bright star, V = 9.6mag
 - In nebula, dense area, near galactic plane
 - Visual double star (2", $\Delta M \approx 2$ mag), or CPM pair
 - Several spectral type estimates: A0, B8, B9

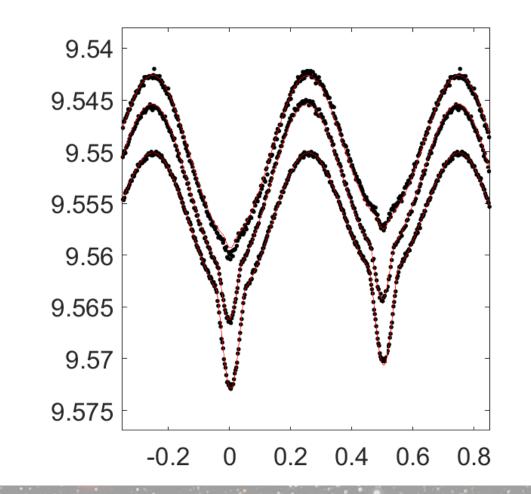

CzeV4315


• 1:

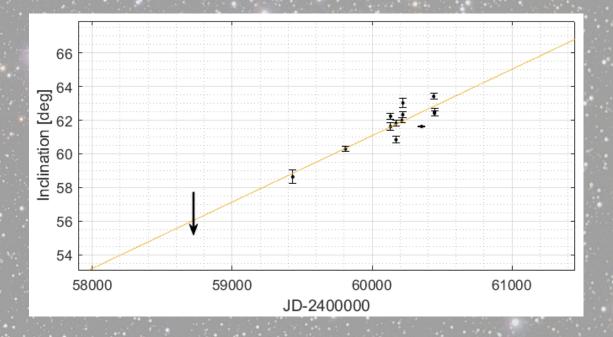
• 2:

- TESS data shows two periodicities:
 - o Detached LC, period 6.74d
 - Very eccentric orbit
 - o Prim eclipse: 12h, sec eclipse 3.5h
 - Close but still detached pair, period 0.919d
 Eclipses on TESS data deeper and deeper
- Unfortunately, no other usable photometry (ZTF, SWASP, Atlas, ASASsn)

CzeV4315

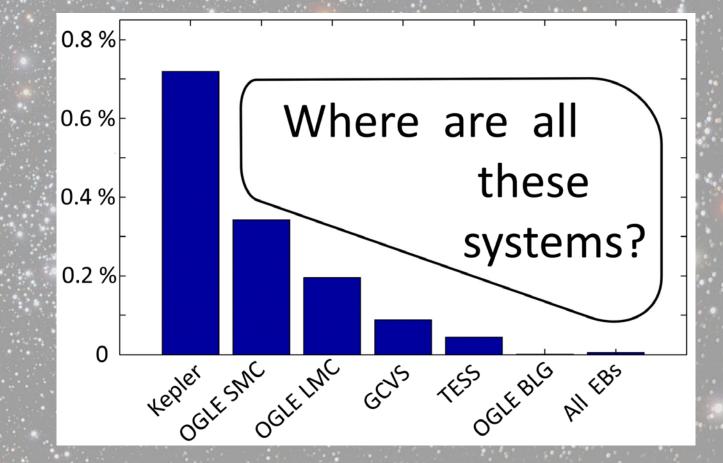

Preliminary pair A:

 P = 6.739 d
 e = 0.69
 Slow apsidal motion
 Constant inclination


Preliminary pair B

 P = 0.9193 d, circular
 TESS sect 14+15: only ELL variations
 TESS sect 41: start of eclipses
 TESS sect 55: clearly visible eclipses
 TESS sect 75: deep enough for ground based observations

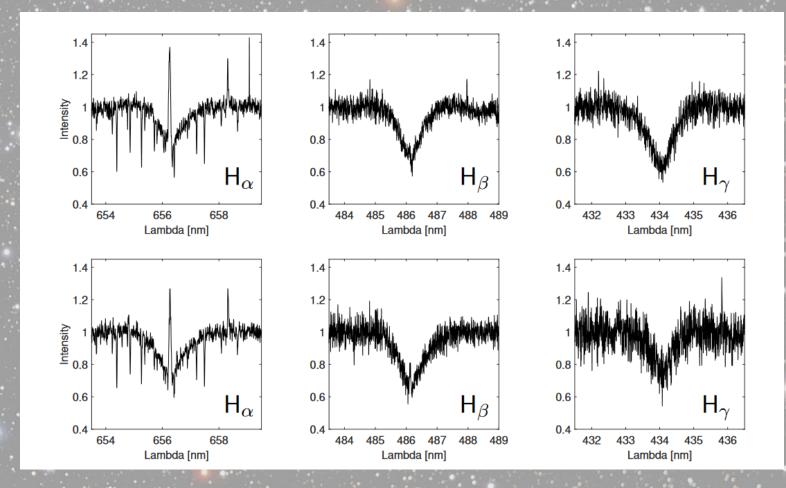
CzeV4315 – evolution during TESS sectors



CzeV4315 – inclination change

- Rapid inclination change
- Now visible on ground-based data
- Rough estimation of nodal
 - precession: second fastest!
- Rough estimation of mutual period
 A-B ≈ 200-300 days

Inclination changing stars – very rare!


Conclusion

- Doubly eclipsing systems as unique celestial mechanics laboratory
- Complicated for modelling taking all constraints into account
- Still very limited number of proved 2+2 quadruples
- For most of them the "divide et impera" method sufficient
- In general, the dynamical interactions should always be tested

This is the end...

my only friend, the end

