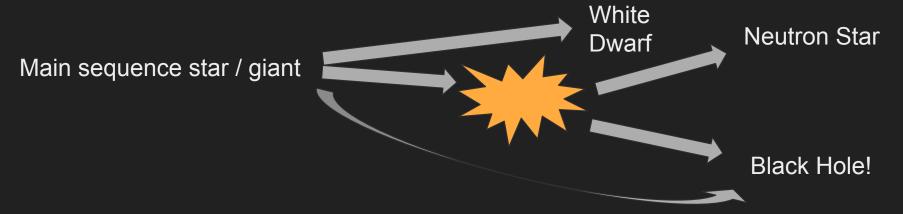
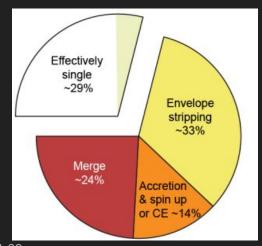
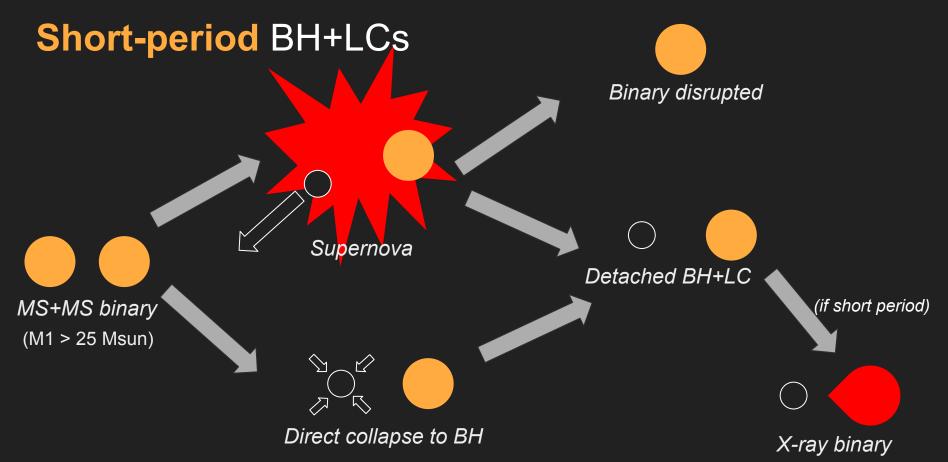
The hunt for short-period black hole companions to Sun-like stars

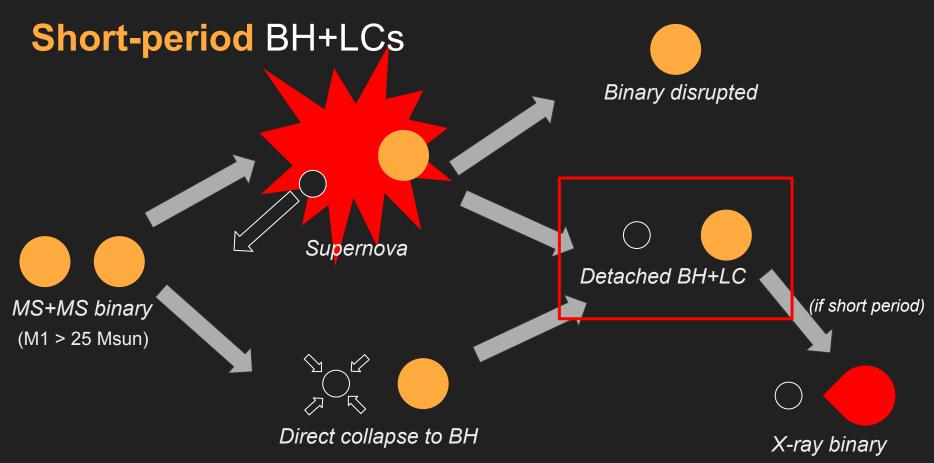
Matthew Green (he/him)

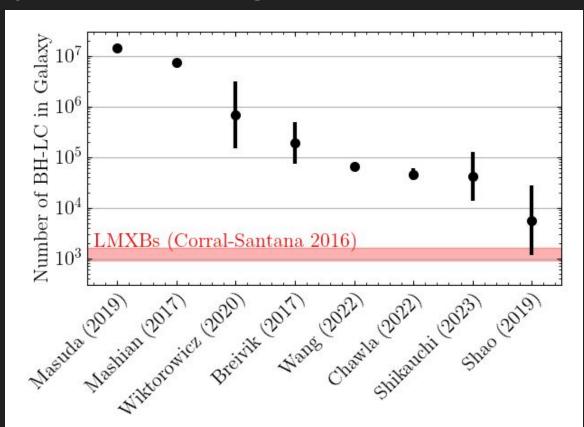
Yoav Ziv, Hans-Walter Rix, Dan Maoz, Tsevi Mazeh, Simchon Faigler, Kareem El-Badry




The hunt for short-period black hole companions to Sun-like stars


or
"How can I publish my null result?"


Black Holes


- Should be 10⁷-10⁸ BHs in Milky Way
- We know ~20-70 in MW, almost all in XRBs
- Very difficult to study when isolated
- Majority should be born in binaries
- How many binaries survive? Estimates vary by factor 10,000!

How many non-accreting BH+MS binaries are there?

Gaia Data Release 3 Special issue

Gaia Data Release 3

Ellipsoidal variables with possible black hole or neutron star secondaries*

R. Gomel¹, T. Mazeh¹, S. Faigler¹, D. Bashi¹, L. Eyer², L. Rimoldini³, M. Audard², N. Mowlavi^{2,3}, B. Holl G. Jevardar³, K. Nienartowicz³, I. Lecoeur³, and L. Wyrzykowski⁴

HIGH MASS FUNCTION ELLIPSOIDAL VARIABLES IN THE GAIA FOCUSED PRODUCT RELEASE: SEARCHING FOR BLACK HOLE CANDIDATES IN THE BINARY ZOO

D. M. ROWAN ^{1,2}, TODD A. THOMPSON ^{1,2,3}, T. JAYASINGHE ⁴, C. S. KOCHANEK ^{1,2}, AND K. Z. STANEK ^{1,2} Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH, 43210, USA

Search for dormant black holes in the OGLE data

M. Kapusta¹, P. Mróz²

Search for dormant black holes in ellipsoidal variables – III. The OGLE BULGE short-period sample

Roy Gomel, ^{1★} Simchon Faigler, ¹ Tsevi Mazeh ¹ and Michał Pawlak ²

Triage of the *Gaia* DR3 astrometric orbits – I. A sample of binaries with probable compact companions

S. Shahaf ⁹, ¹ * D. Bashi ⁹, ² T. Mazeh ⁹, ² S. Faigler, ² F. Arenou, ³ K. El-Badry ^{4,5,6} and H. W. Rix

Unicorns and giraffes in the binary zoo: stripped giants with subgiant companions

Kareem El-Badry , 1,2,3 Rhys Seeburger , Tharindu Jayasinghe, Hans-Walter Rix, Silvin Almada, Charlie Conroy, Adrian M. Price-Whelan 5 and Kevin Burdge^{6,7}

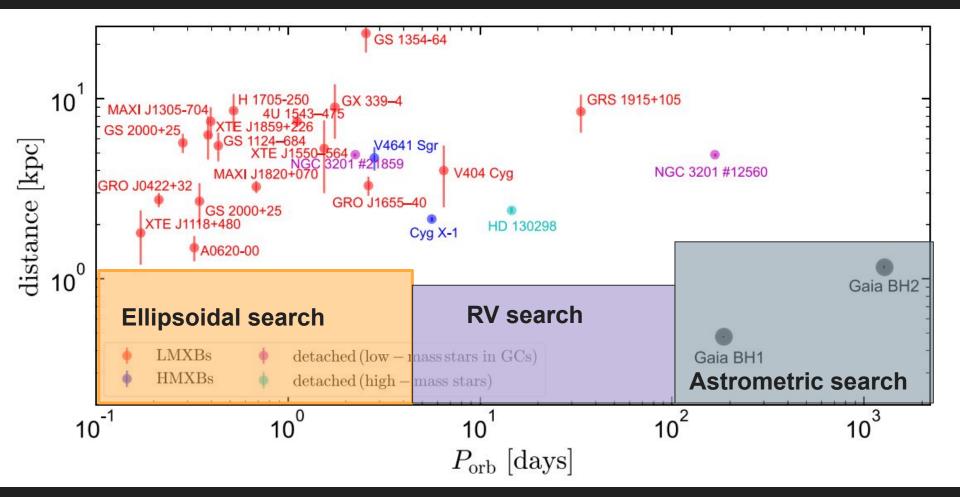
A Sun-like star orbiting a black hole

Kareem El-Badry ⁰, ^{1,2,3}* Hans-Walter Rix, ³ Eliot Quataert ⁰, ⁴ Andrew W. Howard, ⁵ Howard Isaacson, ^{6,7} Jim Fuller ⁰, ⁵ Keith Hawkins ⁰, ⁸ Katelyn Breivik, ⁹ Kaze W. K. Wong, ⁹ Antonio C. Rodriguez, ⁵ Charlie Conroy, ¹ Sahar Shahaf ⁰, ¹⁰ Tsevi Mazeh ⁰, ¹¹ Frédéric Arenou, ¹² Kevin B. Burdge ⁰, ¹³ Dolev Bashi ⁰, ¹¹ Simchon Faigler, ¹¹ Daniel R. Weisz ⁰, ⁶ Rhys Seeburger ⁰, ³ Silvia Almada Monter ³ and Jennifer Wojno ³

Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

A red giant orbiting a black hole

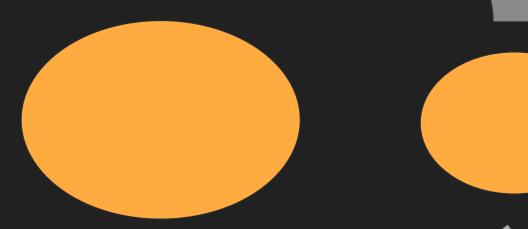
Kareem El-Badry [©], ^{1,2,3,4}* Hans-Walter Rix, ³ Yvette Cendes, ¹ Antonio C. Rodriguez, ⁴ Charlie Conroy, ¹ Eliot Quataert [©], ⁵ Keith Hawkins [©], ⁶ Eleonora Zari, ³ Melissa Hobson, ³ Katelyn Breivik, ⁷ Arne Rau, ⁸ Edo Berger, ¹ Sahar Shahaf [©], ⁹ Rhys Seeburger [©], ³ Kevin B. Burdge [©], ¹⁰ David W. Latham, ¹ Lars A. Buchhave [©], ¹¹ Allyson Bieryla, ¹ Dolev Bashi [©], ¹² Tsevi Mazeh [©], ¹² and Simchon Faigler ¹²

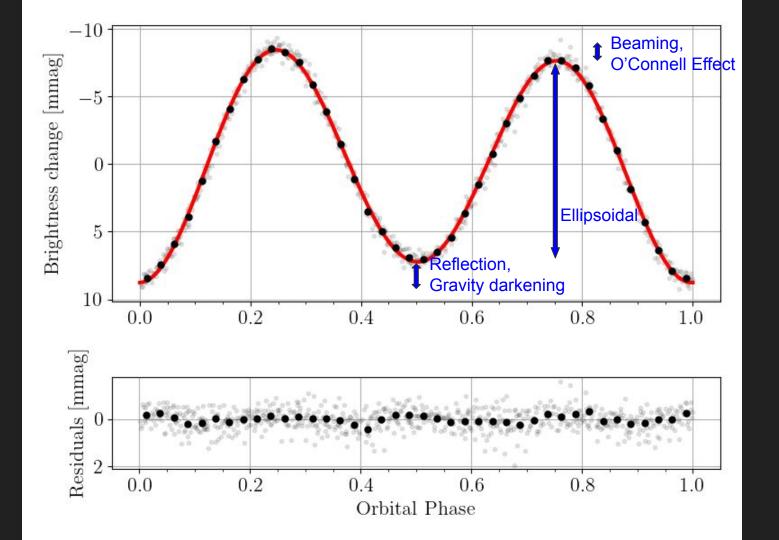

Identifying quiescent compact objects in massive Galactic single-lined spectroscopic binaries*

L. Mahy¹, H. Sana², T. Shenar³, K. Sen^{4,5}, N. Langer^{4,5}, P. Marchant², M. Abdul-Masih⁶, G. Banyard², J. Bodensteiner⁷, D. M. Bowman², K. Dsilva², M. Fabry², C. Hawcroft², S. Janssens², T. Van Reeth², and C. Eldridge⁸

So are BH+LC binaries just difficult to find?

Or are they really very rare?


... Can we set an upper limit on the population density?



Ellipsoidal binaries

Target selection

Ellipsoidal modulation

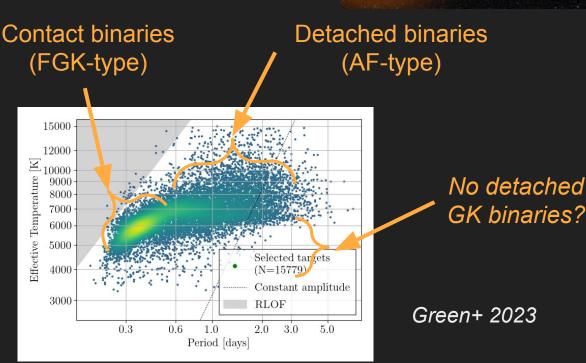
BEER =

BEaming Ellipsoidal modulation Reflection

Faigler et al. (2011,2013,2015a,b)

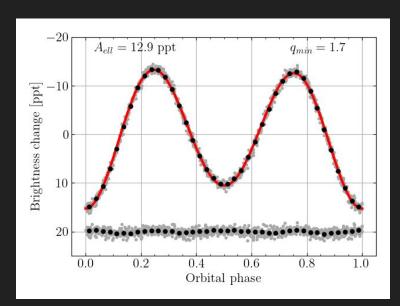
15,000 ellipsoidal binaries from TESS

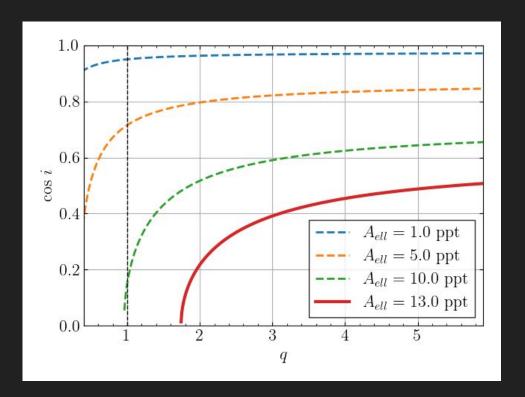
4.5 million MS stars


First two years of TESS

Whole sky

1+ month coverage


30-min cadence


QLP reduction, T < 13.5

How to look for black holes?

Can calculate qmin based on measured ellipsoidal amplitude

How to look for black holes?

Can calculate qmin based on measured ellipsoidal amplitude

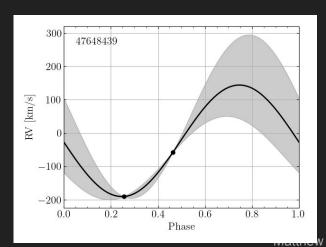
BUT!!!

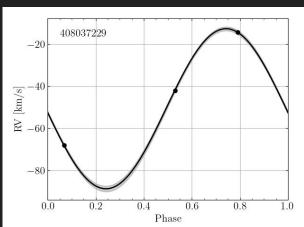
The derived qmin assumes:

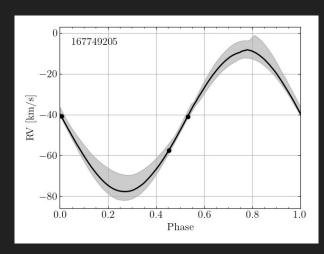
- Reliable M1 and R1
- 2) Binary is (semi-)detached

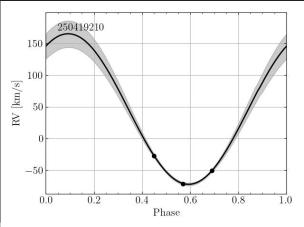
Needs spectroscopic follow-up to confirm

Follow-up of candidates finds that all (so far) are contaminants!

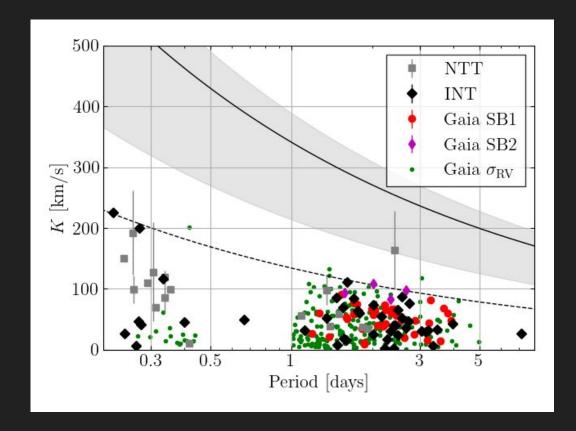

Follow-up


Our candidates


From 4 million TESS stars:


15000 binary systems (Green+ 2023)

450 BH-LC candidates

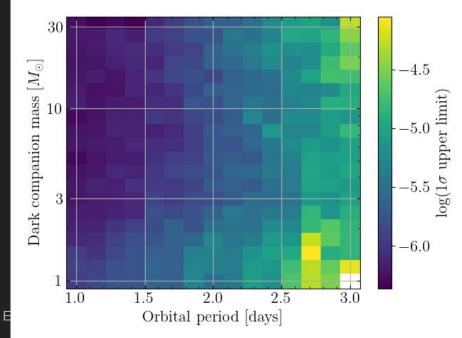


From 450 candidates ...

Approx 60 followed up by us

+ 200 from Gaia

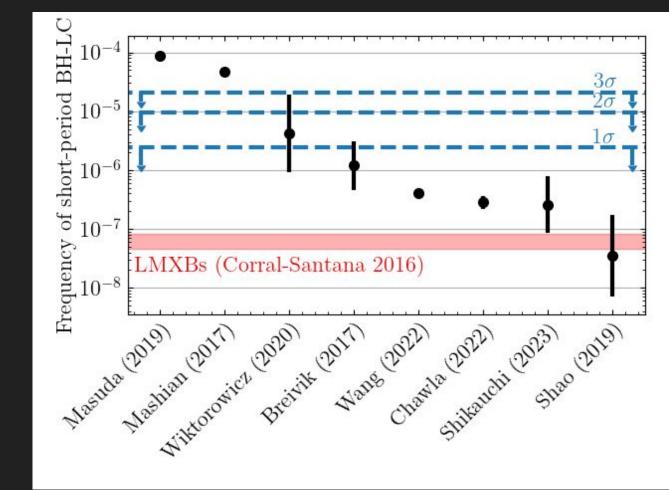
=> No detection so far


Injection-recovery tests

Flat TESS lightcurve + predicted ellipsoidal signal (Porb, M1, M2, cos i)

Is it recovered?

Two-dimensional upper limits

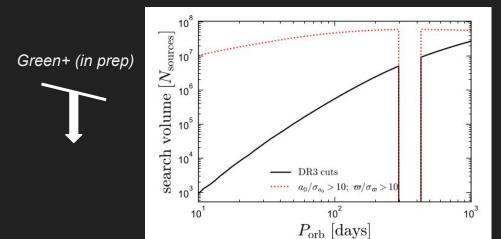


Matthew Green - Binary Stars in the E

Overall

So far we can exclude the most optimistic models

The only
observational
constraint on the
non-accreting
BH+MS population at
short Porb so far


How to look for the next black hole?

Now, comparable search volume to *Gaia* astrometry

After DR4, astrometry will dominate

For short periods, ellipsoidal still the best method

But needs ~10-100x more target stars

El-Badry+ (2023)

Summary

Short-period BH companions exist around less than one in 10⁶ stars

Enough to rule out "optimistic" models (10^{4-5}) but not pessimistic models (10^{7-8})

Comparable to upper limit on long-period systems from astrometry

Black holes are difficult to find

Thank you for listening!

mjgreenastro@gmail.com

https://arxiv.org/abs/2211.06194