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Leavitt Law (1912)
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_ Cepheid absolute / observed magnitude
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pulsation period

metallicity (“metal-rich Cepheids are brighter”, Breuval+2022)
overshooting & rotation

reddening

blending / crowding

binarity / multiplicity

< mass transfer / merger — metallicity, rotation, overshooting, age, evolutionary
track...

<> companion’s contribution to the observed brightness



Binary Cepheids — perfect cosmic laboratory

The dynamical mass of a classical Cepheid variable

star in an eclipsing binary system

G. Pietrzynski®? I. B. Thompson?, W. Gieren!, D. Graczyk?, G. Bono*2, A. Udalski?, I. Soszynski?, D. Minniti® & B. Pileckil:2

Abstract

Stellar pulsation theory provides a means of determining the masses of pulsating classical
Cepheid supergiants—it is the pulsation that causes their luminosity to vary. Such pulsational
masses are found to be smaller than the masses derived from stellar evolution theory: this is
the Cepheid mass discrepancy problem2, for which a solution is missing>43. An
independent, accurate dynamical mass determination for a classical Cepheid variable star (as
opposed to type-ll Cepheids, low-mass stars with a very different evolutionary history) ina
binary system is needed in order to determine which is correct. The accuracy of previous
efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing
binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass
discrepancy problem. In spite of many observational efforts®2, no firm detection of a classical
Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the
discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large
Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its
pulsation mass, providing strong evidence that pulsation theory correctly and precisely
predicts the masses of classical Cepheids.
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Gap between expected and observed binary Cepheids (BC)

all observed
Cepheids
100%
60-80% Cepheids should have expected
companions (Evans 1992, Kervella+2019) binary
Cepheids

MW: ~170 BC (Szabados 2003)

MC: ~80 BC (Szabados & Nehéz 2012,
Pilecki+ 2018, 2021)

MW MC
binary binary
Cepheids Cepheids

~1%



_ Synthetic population of binary Cepheids

v free from the selection and completeness biases
v the percentage of BCs is controlled by the binarity parameter f,,

v fast & efficient: binary population synthesis method, StarTrack' code
(Belczynski+2008)

X (too?) simplistic evolution of single and binary stars — statistical features
X no periods & magnitudes — calculated from external codes

X dependent on input parameters & processes — 16 variants of synthetic
populations for 3 metallicities (SMC, LMC, MW), 200,000 systems each

1 “rapid” code (sub-second calculation of a full binary model), based on semi-analytical models based

on pre-computed 1D stellar models (Hurley et al. 2002), alternatives: binary_c, SeBa (Toonen+2014)



Binary population synthesis method
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Binary interactions
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Observed vs synthetic PLR
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_ Zero point difference

zero point difference
Azp = zpy, — zpy < 0

Luminosity

fiducial relation
ZPo

log P



Azp

PLR zero point difference Azp
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_Ashift in the distance modulus (DM)

MW 50%
MW 0%

log(P/d)



A shift in the distance modulus (DM)
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_Ashift in the distance modulus (DM)
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_Ashift in the distance modulus (DM)
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A shift in the distance modulus (DM)
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DM shift to the LMC, relative to the MW, V band
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Conclusions

+ results consistent with observations (outliers above the PLR)
+ binaries are baked into the calibration

+ DM shiftdepends on f . in reference and target galaxies,
wavelength, Z, and is the smallest in the near-infrared domain and
Wesenheit: #3-6 mmag at most — quantified!

Karczmarek+2022 (ApJ 930, 65)
Karczmarek+2023 (ApJ 950, 182)



Insight in binary Cepheids

+ companions'
evolutionary stages

+ companions'
spectral types

+ proportions of Cepheids
on their 1st, 2nd, 3rd
crossing
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Insight in binary Cepheids

+ companions'
evolutionary stages

+ companions'
spectral types

+ proportions of Cepheids
on their 1st, 2nd, 3rd
crossing
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Insight in binary Cepheids
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companions'
evolutionary stages

companions’
spectral types

proportions of Cepheids
on their 1st, 2nd, 3rd
crossing
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Insight in binary Cepheids
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Insight in binary Cepheids

companions'
evolutionary stages

companions'
spectral types

proportions of Cepheids
on their 1st, 2nd, 3rd
crossing
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Mass ratio vs magnitude difference
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Fraction of binary Cepheids in the LMC

Rough estimate!

e all eclipsing binaries with /= 83° and log P < 4
are known (6)

e forj=1[0,90] we expect 75 Cepheid binaries
with log P < 4

e from synt. pop. we have a fraction of Cepheids
with giant companions and log P < 4 (75)

e we calculate the entire population of Cepheids
with giant companions

e giant companions constitute 3-5% of the
population of binary Cepheids, so the entire
population of binary Cepheids equals to...




Color-color diagram
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