## Investigation on possible mass transfer-pulsation relation







**Çanakkale Onsekiz Mart University, Faculty of Science** 2024



# **Binary Stars**





Equipotential lines of the Roche potential for a binary consisting of stars with mass ratio q = 0.26 and binary separation a. The equipotential lines passing through Lagrangian points L 1 , L 2 , and L 3 are shown (Misra et al., 2020)



http://www.vikdhillon.staff.shef.ac.uk



Pfahl et al. 2002

**"Case C:** The initial orbital period exceeds 100 days so that there is sufficient volume for a star to evolve through to the supergiant without hindrance"

**"Case B:** The initial orbital period lies in the range of several days to about 10 days, so that a star will reach its Roche lobe during the rapid transition phase between the main-sequence and red-giant stage. When the mass loss is interrupted by core-helium ignition in the red giant then the mass transfer refers to case B."

**"Case A:** the initial orbital period is short enough for a star to reach its Roche-lobe at some time during its expansion across the main sequence as a normal core hydrogen-burning star."



Initially massive star

At the end massive star becomes less massive but more evolved.



Initially less massive star

0.0

Short period, semi-detached binary system wih a main-sequence B-A type star and less massive evolved companion which transfers mass onto massive star



Deschamps et. al. 2001

## Effect of Mass transfer



## How can we see the effect of mass-transfer ?



$$\frac{\dot{P}}{P} = \frac{3(M_2 - M_1)}{M_1 M_2} \dot{M}_2$$



(i) If non-conservative mass transfer is the dominant mechanism and then the orbital period of the binary system increases,

(ii) If mass-loss from the system is the dominant mechanism and then the orbital period of the binary system decreases,

# Pulsating Algols



# Pulsating Algols



BJD-2457000 [d]

Delta Scuti type pulsations in Algols and other binaries

![](_page_9_Figure_1.jpeg)

Kahraman Alicavus et al., 2017

(days)

ő

(days)

ő

![](_page_10_Figure_0.jpeg)

Mkrtichian et al., 2018

The frequency variations of the principal oscillation mode

- We collected around 420 Eclipsing binaries containing at least one Delta Scuti component (232 detached, 174 semi-detached)
- Give a sensitivity factor by asking the following questions

- 1. Is there Radial velocity solution?
- 2. Were Teff values determined with a spectral analysis (such as disentangling)? We consider SED analysis as well.
- 3. Does the system have binary modelling with Space-based data?

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_1.jpeg)

Detached systems

### Semi-detached systems

![](_page_14_Figure_1.jpeg)

Detached systems

Semi-detached systems

We searched for Algols including Delta Scuti variables and exhibiting positive parabolic variation in its O-C diagram

Found only 13 systems

**O-C Analysis** 

![](_page_16_Figure_1.jpeg)

Data taken from O-C Gateway, Paschke & Brat, 2006

Mass transfer and loss amount were calculated using the equations given by Erdem and Öztürk (2014) for conservative and non-conservative configurations

# **Binary modeling**

![](_page_17_Figure_1.jpeg)

Binary modelling was carried out to estimate mass of the systems

# Results

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

# Results

![](_page_19_Figure_1.jpeg)

![](_page_20_Picture_0.jpeg)

### **Increase the number of targets**

Trace the effect of mass transfer on the pulsation frequency spectra

![](_page_21_Picture_0.jpeg)