Eclipse mapping study of the eclipsing binary KIC 3858884 with hybrid $\delta~{\rm Sct}/\gamma~{\rm Dor~component}$

Bókon, A., Bíró, I. B. and Derekas, A.

PhD student Institute of Physics, Faculty of Sciences and Informatics, University of Szeged, Hungary

Research fellow assistant Gothard Astrophysical Observatory, Eötvös Loránd University, Hungary

andras.bokon@gmail.com

KOPAL, 9-13 September 2024

EM Study of KIC3858884

KOPAL 2024

Pulsation in binaries, in eclipsing binaries

- ▶ Asteroseismology: need of ℓ , m
- Effect of binarity on pulsation
- In eclipsing binaries: modulations due to eclipse

Inverse methods

Challenge due to degeneracy; used in this Study:

- Dynamic Eclipse Mapping (DEM, Bíró & Knuspl, 2011)
 - $\rightarrow\,$ actively developed recently
 - $\rightarrow\,$ e.g. "hidden", smaller images; fuzzy pixel; spline interpolation
- Direct Fitting of Y_{ℓ}^m (DF, Bíró, 2013)
 - $\rightarrow\,$ may be used to determine symmetry axis of pulsation
 - $\rightarrow\,$ two variants: DF & DFCLEAN
 - ightarrow new, novel method using as core: YLMCMC (Bókon & Bíró, 2019)

There are other inverse methods in the literature as well (e.g. *spatial filtration*, Mkrtichian et al., 2002; Gamarova et al., 2003)

KIC 3858884 system

- Maceroni et al. (2014) first full system analysis
 - Eccentric (e = 0.465), but wide system ($P = 25.952^{d}$)
 - Components similar radii $(3.45R_{\odot}; 3.05R_{\odot})$,
 - and similar masses ($q\sim 0.98$, $M_1=1.88M_{\odot}$),
 - and similar temperatures (6, 800K; 6606K).
 - Both components are pulsating.
- Manzoori (2020) investigated tidally excited pulsations

troduction	Methods & Results	Conclusion
oo	•000000	O

Improving binary model

- Iterative process, successful after 4 iterations.
- Slightly changed parameters
- Residuals are more symmetric

Improving binary model

- Iterative process, successful after 4 iterations.
- Slightly changed parameters
- Residuals are more symmetric

Parameter	Maceroni et al (2014)	This work
i	88.176	88.1942
е	0.465	0.46502
ω [°]	21.61	21.4000
$R_1 \; [R_\odot]$	3.45	3.465
$R_2 \ [R_\odot]$	3.05	3.000

Improving binary model

- Iterative process, successful after 4 iterations.
- Slightly changed parameters
- Residuals are more symmetric

Source identification

According to Manzoori (2020), F2 originating on primary Four methods used:

- Investigation of residuals
- Wavelet-transformation
- > PM (Murphy et al, 2014), modified fitting according to orbital phases
- Double Eclipse Mapping
 - Frequencies to both of components
 - Using general mode of *image reconstruction*

Result

From eight dominant frequencies: seven on secondary, one (F10) on primary.

Selecting for mode identification I

First Eclipse Mappings

Not enough improvement of residuals, as expected; strict χ^2 results in ambiguous images, reconstructions

EM Study of KIC3858884

Selecting for mode identification I

First Eclipse Mappings

Not enough improvement of residuals, as expected; strict χ^2 results in ambiguous images, reconstructions

Selecting for mode identification II

EM Study of KIC3858884

1.00 KOPAL 2024

Selecting for mode identification II

Frequency mod f_{orb}

EM Study of KIC3858884

1.00 KOPAL 2024

Selecting for mode identification II

Frequency mod f_{orb}

EM Study of KIC3858884

1.00 KOPAL 2024

3

э

< 31

Selecting for mode identification III

New evidence for F2 being on the secondary component! (SQRT scale!)

EM Study of KIC3858884

Selecting for mode identification III

Quasi hidden modes? (SQRT scale!)

・ロト・日本・エート・エート シック

Introduction 000	Methods & Results ○○○○○●○	Conclusion O

► Special *l*-multiplets fit and with Wigner coefficient:

Introduction 000	Methods & Results 00000€0	Conclusion O

- ► Special *l*-multiplets fit and with Wigner coefficient:
 - $\blacktriangleright~\alpha\sim22^\circ$ and $\beta\sim22^\circ$
 - very close to aligned configuration

Introduction	
000	

► Special *ℓ*-multiplets fit and with Wigner coefficient:

- $\alpha \sim 22^{\circ}$ and $\beta \sim 22^{\circ}$
- very close to aligned configuration
- check run with this configuration not confirming

Introd	uction
000	

► Special *ℓ*-multiplets fit and with Wigner coefficient:

- $\blacktriangleright~\alpha\sim 22^\circ$ and $\beta\sim 22^\circ$
- very close to aligned configuration
- check run with this configuration not confirming
- DF, DFCLEAN with 4-3 frequency packs
- > YLMCMC: model selecting MCMC method for searching Y_{ℓ}^{m} -s

・ロト・日本・山田・山田・ 白下

► Special *ℓ*-multiplets fit and with Wigner coefficient:

- $\blacktriangleright~\alpha\sim 22^\circ$ and $\beta\sim 22^\circ$
- very close to aligned configuration
- check run with this configuration not confirming
- DF, DFCLEAN with 4-3 frequency packs
- ▶ YLMCMC: model selecting MCMC method for searching Y_{ℓ}^{m} -s

	F1	F2	F3	F6	F15	F44	F52
DF	(0,0)	(0,0)	(0,0)	(0,0)	(1,-1)	(3,1)	(2,-1)
DFCLEAN	(0,0)	(0,0)	(0,0)	(1,1)	(1, -1)	(3,1)	(2,-1)
YLMCMC	(0,0)	(0,0)	(0,0)	(2,0)	(2,-2)	(3,-1)	(2,1)
percent	92.5	99.4	27.8	17.7	13.2	18.1	25.0
odds	12.4	168.5	1.2	1.7	1.1	1.01	1.05
odds of median	12.4	168.5	2.2	2.8	1.6	2.4	10.6

ADA HE AEN AR

EM Study of KIC3858884

KOPAL 2024

	F1	F2	F3	F6	F15	F44	F52
EM	(2,-2)	(3,3)	(0,0)	(1,-1)	(0,0)	(3,-1)	(2,1)
DF	(0,0)	(0,0)	(0,0)	(0,0)	(1, -1)	(3,1)	(2,-1)
DFCLEAN	(0,0)	(0,0)	(0,0)	(1,1)	(1, -1)	(3,1)	(2,-1)
YLMCMC	(0,0)	(0,0)	(0,0)	(2,0)	(2,-2)	(3,-1)	(2,1)

▲□▶▲@▶▲≣▶▲≣▶ ▲国▲ のQ@

EM Study of KIC3858884

	F1	F2	F3	F6	F15	F44	F52
EM	(2,-2)	(3,3)	(0,0)	(1,-1)	(0,0)	(3,-1)	(2,1)
DF	(0,0)	(0,0)	(0,0)	(0,0)	(1, -1)	(3,1)	(2,-1)
DFCLEAN	(0,0)	(0,0)	(0,0)	(1,1)	(1, -1)	(3,1)	(2,-1)
YLMCMC	(0,0)	(0,0)	(0,0)	(2,0)	(2,-2)	(3,-1)	(2,1)

EM Study of KIC3858884

	F1	F2	F3	F6	F15	F44	F52
EM	(2,-2)	(3,3)	(0,0)	(1,-1)	(0,0)	(3,-1)	(2,1)
DF	(0,0)	(0,0)	(0,0)	(0,0)	(1, -1)	(3,1)	(2,-1)
DFCLEAN	(0,0)	(0,0)	(0,0)	(1,1)	(1, -1)	(3,1)	(2,-1)
YLMCMC	(0,0)	(0,0)	(0,0)	(2,0)	(2,-2)	(3,-1)	(2,1)

Most dominant two frequencies:

EM Study of KIC3858884

	F1	F2	F3	F6	F15	F44	F52
EM	(2,-2)	(3,3)	(0,0)	(1,-1)	(0,0)	(3,-1)	(2,1)
DF	(0,0)	(0,0)	(0,0)	(0,0)	(1, -1)	(3,1)	(2,-1)
DFCLEAN	(0,0)	(0,0)	(0,0)	(1,1)	(1, -1)	(3,1)	(2,-1)
YLMCMC	(0,0)	(0,0)	(0,0)	(2,0)	(2,-2)	(3,-1)	(2,1)

- Most dominant two frequencies:
 - radial by DF or non-radial by EM?
 - distorted pattern due to large amplitude?

	F1	F2	F3	F6	F15	F44	F52
EM	(2,-2)	(3,3)	(0,0)	(1,-1)	(0,0)	(3,-1)	(2,1)
DF	(0,0)	(0,0)	(0,0)	(0,0)	(1, -1)	(3,1)	(2,-1)
DFCLEAN	(0,0)	(0,0)	(0,0)	(1,1)	(1, -1)	(3,1)	(2,-1)
YLMCMC	(0,0)	(0,0)	(0,0)	(2,0)	(2,-2)	(3, -1)	(2,1)

- Most dominant two frequencies:
 - radial by DF or non-radial by EM?
 - distorted pattern due to large amplitude?
- F3 and F15 radial

	F1	F2	F3	F6	F15	F44	F52
EM	(2,-2)	(3,3)	(0,0)	(1,-1)	(0,0)	(3,-1)	(2,1)
DF	(0,0)	(0,0)	(0,0)	(0,0)	(1, -1)	(3,1)	(2,-1)
DFCLEAN	(0,0)	(0,0)	(0,0)	(1,1)	(1, -1)	(3,1)	(2,-1)
YLMCMC	(0,0)	(0,0)	(0,0)	(2,0)	(2,-2)	(3,-1)	(2,1)

- Most dominant two frequencies:
 - radial by DF or non-radial by EM?
 - distorted pattern due to large amplitude?
- F3 and F15 radial
- predicted hidden modes for F44 and F52 confirmed

KOPAL 2024

1 3 1 1 3 1 3 1 3 1 3 1 4 3 1

Conclusion and ending remarks

- Refined model for KIC 3858884 system
- Specified origin star for dominant frequencies
- Designed and utilized a special method for finding the modulations
- Successful mode identification two hidden modes found.

Submitted to A&A - arXiv: 2408.14464

Thank you for your attention!

Additional - slides

EM Study of KIC3858884

EM Study of KIC3858884

FREQUENCY (1/forb)

EM Study of KIC3858884

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

EM Study of KIC3858884

▲□▶▲圖▶▲≣▶▲≣▶ ≣|■ のQ@

EM Study of KIC3858884

000000

EM Study of KIC3858884