Magnetic Activity in Close Binary Systems Zsolt Kővári

STellar Activity Research @ Konkoly (STARK)

A. Görgei, L. Kriskovics, K. Oláh, B. Seli, L. van Driel-Gesztelyi, K. Vida

Konkoly Observatory, HUN-REN RCAES, Budapest, Hungary

Why to study magnetic activity in CBs?

- Understanding the overall role of magnetism in CBs
- To answer
 - What are the similarities and differences between dynamos in single stars and binary systems?
 - How a close companion (star or planet) affects dynamo operation?
 - How magnetism affects the evolution and dynamics in CBs?
- Disentanglement of activity phenomena from other effects
 - e.g., starspots vs. a faint eclipsing companion

The solar dynamo:

Plasma dynamics + Magnetic field = Dynamo mechanism - global/cyclic

The multifaceted role of tidal interaction

- Synchronization
- Circularization
- Distortion of the shape (non-axisymmetry)
- Angular momentum transfer, mass loss, ...
- Stellar evolution

The role of binarity in terms of magnetic activity

- Maintaining rapid rotation (\rightarrow enhanced dynamo action)
- Confinement/induction of differential rotation
- Tidal interactions may induce helical flows
- Activity centers bound to the orbit (active longitudes)
- Induced flare/CME activity due to interacting magnetospheres

V4046 Sgr Gregory et al. 2018

Dynamics of toroidal magnetic flux tubes under tidal influences

but not only Activity observables in CBs

- Starspots, plages
- Active longitudes
- Activity cycles
- Flares, CMEs
- Extra emission from radio to UV to X-rays
- etc.

Indirect means I. Photometric spot modeling

THE ASTRONOMICAL JOURNAL, 162:123 (18pp), 2021 September

Zs. Kővári & J. Bartus: Testing the 802 .95 Intensity .9 .85 Δ 2 Δ 6 8 Phase

0.00 0.50

Figure 1. Fundamental limitations of the mapping problem. Each row corresponds to a stellar surface with a different number of dark spots seen at various phases at an inclination $I = 60^{\circ}$; all images are shown on the same color scale. The bottom panel shows the light curves of each of these stars. All six light curves are indistinguishable from each other, even at an infinite S/N. See text for details.

Luger et al.

Indirect means II. **Doppler** imaging

- Line profiles are 1D fingerprints of the apparent surface
- The surface can be reconstructed from a set of spectra covering the full rotational <u>phase</u> (\rightarrow time average images)

6440

Vogt & Penrod 1983

Indirect means III. Eclipse/transit mapping

- A complementary method to detect starpots
- The precision of space photometry is necessary

(PHOEBE, A. Prsa)

Direct imaging of starspots

- Long-baseline optical/NIR interferometry Snapshot' imaging
- Strong constraints (bright object, large enough angular diameter)

CHARA / MIRC

Roettenbacher et al. 2016

Eclipsing binary system of K2V+WD (Kővári et al. 2021)

K2 light curve

$$P_{\rm rot} \sim P_{\rm orb} = 0.52 {\rm d}$$

K2 light curve after EB model extracted

200

5

Stable spot configuration, active longitude facing the WD

 $\phi = 0.00$ $\phi = 0.25$ $\phi = 0.50$ $\phi = 0.75$ 5400 Temperature [K] 4950 4500 4050 3600 $\phi = 0.00$ $\phi = 0.25$ $\phi = 0.50$ $\phi = 0.75$ 5400 Temperature [K] 4950 2014-2015 4500 4050 3600

Kővári et al. 2021

Measuring surface differential rotation from spot tracking

Donati & Collier Cameron 1997

Average cross-correlation function map indicating weak solar-type DR

Dynamic H α spectra

+emission → plages, interacting magnetospheres, activity cycle?

+absoption \rightarrow dark filaments

Dynamic H α spectra

+emission → plages, interacting magnetospheres, activity cycle?

+absoption \rightarrow dark filaments

1.03 xn 1.02 MJ 1.01 2 1.00 0.99 Å 0.98 0.97 2233.6 2233.8 2234.0 2234. Time (BJD - 2454833) 2234.2 2234.4 2234.6 φ=0.0 φ=0.5 WD ATTINE & BALLER

No phase dependency in flare occurence

Irradiation by the WD

12.7-yr activity cycle in X-ray

EI Eri

a CB of G5IV+unseen M?V (Kriskovics et al. 2023)

 $P_{\rm rot} \sim P_{\rm orb} = 2d$

Weak solar-type DR from the cross-correlation function map

EI Eri

TESS light curves with spots and flares

KIC 2852961

K0 III primary of an RS CVn binary (SB1) *P*_{rot}=35.5d *P*_{orb}=? (probably synchronized)

$\sigma \text{ Gem}$

An RS Cvn type close binary system (SB1) with a K1III primary

Anti-solar DR and surface flows:

Average longitudinal cross-correlation function maps

STELLA data from 2006/2007

Kővári et al. 2007, 2015

Roettenbacher et al. 2015

Average <u>latitudinal</u> crosscorrelation function map

Common poleward motion of ~310 ms⁻¹ cf. Kitchatinov & Rüdiger 2004: $u_{min} = l^2 / (\tau R) \sim 0.3$ km/s flow required to maintain anti-solar DR

V815 Her, a compact 2+2 hierarchical system

 $P_{\rm rot} \sim P_{\rm orb} = 1.8d$

 $P_{\rm orb} = 2092d$

V815 Her A: G6V+ $0.3M_{Sun}$ (unseen) V815 Her B: (EB) $0.44M_{Sun} + 0.19M_{Sun}$ $P_{orb} = 0.52d$ V815 Her AB:

 $a_{\rm A} \approx 2 R_{\rm Sun}$ *a*_B ≈ 2.35 *R*_{Sun} *a*_{AB} ≈ 1.6 AU

V815 Her long-term photometry

V815 Her Doppler imaging

(Mar-Oct 2018)

Average surface shear:

Kővári et al. 2024

Confined DR for members in CBs

 $\Omega(\beta) = \Omega_{eq}(1 - \alpha \sin^2 \beta)$ $\alpha = (\Omega_{eq} - \Omega_{pol}) / \Omega_{eq}$

- *P*_{rot}-dependence of the shear parameter ("relative DR")
- Bimodal relationship:
 - Members in close binary systems show confined DR

```
See also Lurie et al. 2017
```

Kővári et al. 2017 (updated)

"The most spotted star in the sky"

- XX Tri
- K0III+M3-5V(unseen)
- $P_{rot} \sim P_{orb} = 24d$

Strassmeier & Oláh 1992

16-yr spot evolution of XX Tri

- Exceptional dataset from STELLA (2006-2022):
 - ~2000 HiRes spectra (R~55000) over 16 years
 - $_{-} \rightarrow 99$ Doppler images
 - $_{-} \rightarrow movie$

STELLA Robotic Observatory (AIP+IAC)

Doppler imaging of XX Tri

High-latitude cool spots

- Active longitudes? -Yes
- Bound to orbit? -No

(Strassmeier et al. 2024)

The movie

The real-time coverage is 237 stellar rotations, or 5670 days (Aug. 2006–Feb. 2022, Strassmeier et al. 2024)

XX Tri: A chaotic non-periodic dvnamo

- Huge starspots at high latitudes ~1000 K cooler than the unspotted surface
- Active longitudes unbound to orbit
- Systematic starspot emergences, decays, and also seemingly erratic spot rearrangements over 16 years.
- A more chaotic dynamo than the Sun's
- cf. "No Sun-like dynamo..." in the case of ζ Andromedae, another K-giant in a CB

Strassmeier et al. 2024

A new aspect worthy of attention:

The photocenter of XX Tri

Average photocenter displacement over 16yr is 6% of the radius (d=640 ly) ~15µas

Maximum photocenter displacement (0.1 R*) ~24µas

Gaia DR3 parallax error (Gaia collaboration 2022) ~ 28µas

Starspots on the RS CVn binary λ And

- SB1 binary with a G8 III-IV primary, $P_{orb} = 20d$, e = 0
- Asynchronous rotation: $P_{rot} = 54.4d (v \sin i = 7 \text{km/s} \rightarrow \text{LBT} \text{ spectra}, R = 250,000)$

• Dopplar imaging \rightarrow and a pate (anot A reaching 1000 K contract)

Adebali et al. 2024

Long-lived spots on λ And

Adebali et al. 2024

Eclipse/transit mapping

TIC 326257590: K0IV+M?V

Direct imaging of starspots of giants in RS CVn binaries

North (mas)

- ζ And, σ Gem (Roettenbacher et al. 2016, 2017)
- λ And (Parks et al. 2021)
- Polar spots are indeed real!
- Hemispheric differences can be remarkable
- "No Sun-like dynamo..."

Roettenbacher et al. 2016, 2017

Activity phenomena in CBs

Phenomenon	Characteristic
Starspots	Relatively stable spot coverages
Activity cycles	Irregularity, multiplicity, modulation
Active longitudes	Quite common, not necessarily bound to orbit
Surface differential rotation	Usually confined compared to singles
Flare activity	Flares commonly observed, not always coupled to orbit
Interbinary activity	Extended coronal loops, coupled magnetic fields, mass transfer
Magnetic dynamo	Giants: chaotic, non-periodic, not solar like MS: diverse