Constraining the stability of mass transfer

Veronika Schaffenroth

Binary and Multiple Stars in the Era of Big Sky Surveys, Litomyšl, 10.9.24

Thüringer Landessternwarte Tautenburg

Mass transfer – Roche lobe

https://astronomy.swin.edu.au/cosmos/R/Roche-lobe

$$\frac{r_{\rm L,1}}{a} = \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1+q^{1/3})}, \qquad q = \frac{M_1}{M_2} \tag{1}$$

Stable Mass transfer – Roche lobe overflow

https://astronomy.swin.edu.au/cosmos/R/Roche-lobe

• stable mass transfer: Roche lobe overflow in close binaries with critical mass ratio:

$$q = M_{\rm donor}/M_{\rm gainer} < 1.2 - 1.5$$
 for low-mass stars (2)

 \rightarrow orbit widens

Unstable Mass transfer – Common Envelope Evolution (CEE)

for larger mass difference: unstable mass transfer
⇒ common envelope phase

https://astrobites.org/2013/02/12/are-we-seeing-common-envelopes-after-all/cee/

 $\rightarrow\,$ difficult to observe directly $\rightarrow\,$ orbit shrinks significantly

Periods and WD masses of WD+MS binaries

Parsons et al. 2023

Periods and eccentricity of post-AGB systems

Critical mass ratio for stable mass transfer

Temmink et al. 2022

 \rightarrow depends on how stellar and Roche lobe radius react to mass transfer \rightarrow significant impact on binary evolution and its outcome

Hot subdwarf stars of spectral type B (sdB)

Hot subdwarf stars of spectral type B (sdB)

Stripped red giant at the tip of the RGB

in He-core burning phase

direct observation, e.g., Maxted, ..., Schaffenroth 2013, Nature

 \rightarrow binary interaction required

Hot subdwarfs in wide binaries (sdO/B+F/G/K)

 \rightarrow 1/3 of all sdB show an infrared excess in the spectral energy distribution, many of them are composites

RV variation of composite sdBs

 \rightarrow currently 23 sdB+F/G/K binaries with solved orbits + two sdO+F/G binaries (P = 500 to 1800 days), post-RLOF systems

Hot subdwarfs in close binaries

unseen companion discovered by radial velocity method

 \rightarrow post-common envelope systems (eclipses, reflection or ellipsoidal/beaming)

Population synthesis of sdB+MS

Han et al. 2002,2003

Orbital periods of close sdB binaries

 \rightarrow study of known sdB binaries and new reflection effect systems using TESS light curves

Orbital periods of sdB binaries

adopted from Schaffenroth et al. 2022 and Vos et al. 2019

Companion mass distribution of composite sdB binaries

using Vos et al. 2019

Preliminary mass distribution of the sdB+dM/BD systems

Minimum companion mass sdB+WD

Schaffenroth et al. in prep

PB5333 - an intermediate period sdB binary

Schaffenroth et al. in prep

sdB+K8V with an intermediate period of P = 92 d

- \rightarrow period in between post-CE and post-RLOF systems
- \rightarrow minimum mass of the companion $M_{2,\min} = 0.70 \,\mathrm{M}_{\odot}$
- \rightarrow interesting for binary formation scenarios

EC20358-2708 - sdO+K0III

• $P = 61 \pm 2$ d, $K_{sdO} = 20 \pm 1$ km/s, $K_{RG} = 9.0 \pm 0.7$ km/s $\rightarrow M_{RG} = 1.45 \pm 0.45 \,M_{\odot}$

Period-sdB mass diagram of sdB binaries

Preliminary companion mass-period diagram of sdB binaries with main sequence companions

Conclusions

2/3 of all sdBs are in binaries either post-RLOF or post-CE

- \rightarrow perfect objects to study mass transfer and its stability
 - *P* and m_{comp} distributions show: sdB+dM/BD or WD are post-CE and sdB+FGK are post-RLOF \rightarrow mass transfer more stable than expected $q_{\text{crit}} \simeq 2 - 3$ for low mass stars
- → follow-up and analysis of more short, intermediate, and long-period sdB+BD/MS systems in the EREBOS project to get a statistical significant sample over the parameter range
- → new population synthesis study taking new observational constraints into account

Period distribution of all sdB binaries

adopted from Schaffenroth et al. 2022, Schaffenroth et al. in prep, Vos et al. 2019, Geier et al. 2024

Period distribution of sdBs from BPS

Eclipsing Reflection effect (HW Vir systems)

 \rightarrow 20 systems with periods from 0.07 to 0.25 d analyzed

Reflection effect

amplitude depends on flux of primary, separation (period), inclination, size of companion

Ellipsoidal modulation and Doppler beaming (sdB+WD)

Pelisoli, ..., Schaffenroth et al. 2021, Nature Astronomy

Doppler beaming at non-relativistic velocities

$$F_{\lambda} = F_{\lambda,0}(1 - B\frac{v_r}{c}), \qquad B = 5 + \frac{d\ln F_{\lambda}}{d\ln \lambda}$$
(3)

Preliminary companion mass-period diagram of all sdB binaries

Masses of sdBs from MESA

Han et al. 2003

Masses of known sdB+dM/BD

Schaffenroth et al. 2022

Masses of known sdB+WD

Schaffenroth et al. 2022

Masses of known hot subdwarfs in close binaries

Schaffenroth et al. 2022

Masses of known hot subdwarfs with WD companions in longer periods

