

Accurate determination of binary star masses and distances using optical long-baseline interferometry

Alexandre Gallenne

University Andrés Bello University of Concepcion French-Chilean Laboratory for Astronomy

Introduction

- Pros:
- → Simple method by combining radial velocities and astrometry
- → Unique objects to determine both the masses and the distance of a system
- Can test the evolutionary models
- ➡ Can test/validate the Gaia parallaxes
- → For binary Cepheids we can test the P-L relation

- Cons:

- ➡ Lines of both components must be detectable (SB2) to measure RVs and remove the degeneracy mass/distance
- Need to be spatially resolved for astrometric measurements
- ➡ AO imaging Imagi

Long-baseline interferometry provides accurate & precise astrometry below the diffraction limit

Introduction

- Some numbers in H band $(1.6\mu m)$:

- → VLT (D~8.2m): ~40mas
- ➡ ELT (D~39m): ~8.5mas
- → VLTI (B~200m): ~1.5mas
- ➡ CHARA (B~330m): ~1mas

VLTI resolution~ 25xVLT ~ 6xELT

But sensitivity of a single telescope still better than interferometry

Introduction

- Not new! Already done in the past

- But new instruments now allow to reach higher-contrast systems with a higher precision
 - RVs ~ m/s
 - Astrometry ~ μ as

Luminosity (Solar)

- For a given age, these 3 models differ
- Differences for high and low mass stars are mostly due to variations in poorly constrained input physics
- Models agree well for stars similar to the sun
- Uncertainties in the description of convective core overshooting lead to different main-sequence lifetimes for intermediate mass stars
- Uncertainties in the treatment of convection lead to different predictions of radii for low-mass dwarfs
- For red giants, major uncertainties include interior angular momentum transport and mass loss

- Accurate and precise masses should help to calibrate the models
- Binary stars are perfect objects for that purpose
- In addition to benchmark stars for Gaia

- Observations of binaries triggered by a project about eclisping binaries

➡ Radial velocities precise and accurate at 100m/s
 ➡ Astrometry precise and accurate better than 50µas

TZ For

Similar age ~ 1.3 Ga

AL Dor

KW Hya

3.92

3.90

3.88

 $\log T_{\rm eff}$

3.86

3.84

3.82

— PARSEC: Z = 0.027

MIST: Z = 0.025

----- BaSTI: Z = 0.035

- Comparison with Gaia DR3 parallaxes:

- PIONIER instrument was used:
 - ✓ Higher angular resolution (H band)
 - ✓ Fast aquisition (~15mn)
 - ★ Wavelength calibration accurate to 0.35%

- New ongoing program to observe 40 binary systems with GRAVITY (non eclipsing):

- **×** Lower angular resolution (K band)
- **★** Slower acquisition (~50mn)
- ✓ Wavelength calibration accurate to 0.02%

	basti	dartmouth	mist	parsec	fitted
Kmag1	-1.13	-0.71	-1.64	-0.84	*
Kmag2	0.16	2.07	0.46	-0.93	*
M1	-0.99	5.18	2.42	-53.23	*
M2	1.14	-7.78	3.2	-30.6	*
logL1	-0.11	0.09	0.41	-1.11	
logL2	-0.29	-0.54	-0.1	-0.08	
logR1	1.09	0.69	1.15	0.79	*
logR2	0.41	-1.2	-0.2	-0.42	*
logT1	-0.86	-0.37	-0.31	-1.86	*
logT2	-0.43	-0.11	-0.01	0.12	*
age	8.92+/-0.62	8.62+/-1.41	6.11+/-2.21	1.88+/-4.22	
chi2r	0.88	2.41	2.2	14.47	

	basti	dartmouth	mist	parsec	fitted
Kmag1	-2.42	-2.25	-2.06	-0.21	*
Kmag2	0.48	0.68	0.85	-0.12	*
M1	-4.7	1.14	0.99	-1.38	*
M2	-0.31	1.09	-0.8	16.95	*
logL1	-0.37	-0.56	-0.68	-1.56	
logL2	-0.65	-0.77	-0.86	-0.35	
logR1	-0.41	-0.57	-0.72	-2.7	
logR2	-0.29	-0.37	-0.44	-0.13	
logT1	0.01	-0.12	-0.07	2.46	*
logT2	-1.28	-1.43	-1.54	-0.75	*
age	5.46+/-0.61	5.71+/-0.29	5.64+/-0.37	5.59+/-0.27	
chi2r	2.19	2.23	2.12	1.57	

	basti	dartmouth	mist	parsec	fitted
Kmag1	-0.19	0.01	-0.12	-0.11	*
Kmag2	0.03	0.46	0.2	-0.35	*
M1	-1.3	41.88	31.48	-83.48	*
M2	5.23	-8.46	13.29	32.85	*
logL1	1.66	1.59	1.7	1.52	
logL2	1.75	1.57	1.74	1.83	
logR1	1.84	1.78	1.8	1.79	
logR2	1.86	1.75	1.8	1.91	
logT1	-0.7	-0.73	-0.3	-1.12	*
logT2	-0.35	-0.73	-0.1	-0.2	*
age	0.91+/-0.43	3.29+/-3.31	1.88+/-4.3	0.33+/-5.3	
chi2r	2.53	3.55	2.22	1.98	

- Comparison with Gaia DR3 parallaxes:

- Cepheids are important standard candles for the extragalactic distance scale
- When in a binary system (> 80%), we should be able to:
 - Have an independent distance measurement: test Gaia and P-L relations
 - Measure the dynamical mass: test evolutionary models

- Challenging targets because we need to detect the companions both spectrally and spatially:
 - Companions are mostly early-type main-sequence
 high contrast
 - Lines are usually broad and blended
 - Orbits are within 50mas

UV spectroscopy necessary to observe lines from the companions

Long-baseline interferometry provides accurate & precise astrometry below the diffraction limit

- First binary Cepheid observed with interferometry in 2012: V1334 Cyg

- SB1 system so the masses and the distance are degenerate parameters

- I monitored the orbit with several instruments

Gallenne et al. (2018)

Accurate & precise distance of a Cepheid (1%)
 Accurate & precise mass of a Galactic Cepheid (3%)

- Comparison with Gaia and P-L relations:

- Comparison with predictions from evolutionary models:

- New impresive results for another Cepheid SU Cyg (Gallenne et al. 2024, in prep.):

Most accurate & precise distance of a Cepheid (0.7%)
 Most accurate & precise mass of a Galactic Cepheid (1%)

- Comparison with Gaia and P-L relations:

- Comparison with predictions from evolutionary models:

- Interferometry is a powerful technique for astrometry of close binary stars
- When combined with precise RVs, high-precision masses and distances can be measured
- Comparison of masses & other observables with evolutionary models shows some discrepancies
 - Stellar age can depend on the model used
- 60% (10/16 stars) of our measured distances are > 1 σ away from Gaia
 - No correlation relative error vs. ruwe
 - Correlation a_{phot} vs. ruwe confirmed, even below the 1.4 cutoff
 - Possible correlation with the brightness of the star (saturation effect?)
- For 2 Cepheids, measured distances differ by 10-20% with P-L relation calibrated from photometry, while relations calibrated from direct distance measurement are in better agreement
- Evolutionary models also predict larger masses than expected for the Cepheids

Thank you

